
Automatic Generation of Multi-Agent
Programs from Ontology Models

Artur Freitas �, Rafael H. Bordini, and Renata Vieira

PUCRS, Porto Alegre, Brazil
� Corresponding author: artur.freitas@acad.pucrs.br

rafael.bordini@pucrs.br, renata.vieira@pucrs.br
http://smart-pucrs.github.io/

Abstract. This paper presents our proposal for the development of
multi-agent systems designed as ontology models supporting code gener-
ation. The foundation of such work takes into consideration ontologies for
agent-oriented software engineering aligned with the JaCaMo framework.
These techniques are implemented in a tool that supports multi-agent
systems core code generation for JaCaMo. The underlying ontology also
allows for reasoning about the multi-agent systems models under de-
velopment. Such comprehensive approach, therefore, spans through the
modelling, programming, and verification of agent-oriented software.

Keywords: Ontologies for agents · Reasoning in agent-based systems ·
Development techniques, methodologies, tools and platforms.

1 Introduction

The design of complex systems, such as Multi-Agent Systems (MAS), should
consider models that are clear to communicate, provide support during pro-
gramming, and allow reuse and reasoning over the specification [5]. The use
of modelling methodologies help us to understand complex problems and their
potential solutions through abstractions. Thus, in this context, research investi-
gating ontologies to support the modelling of MAS has been carried out [5, 10,
15]. Well-known MAS development frameworks, such as JaCaMo [1], integrate
different technologies and languages for the design of MAS. In this paper, we
propose an ontology-based MAS development approach where a common basic
language is used to present and specify a MAS, resulting in the integration of
their different aspects and also serving for core code generation in JaCaMo.

It should be noted from the start that, although the general approach can
be applied to any agent-oriented platform, the fact that there is not overall
agreement on concepts and terms used in Agent-Oriented Software Engineering
(AOSE), we need specific ontologies for each platform. While we here concentrate
on the well-known JaCaMo framework [1], work on alignment with upper on-
tologies might in the future facilitate also the integration of different approaches
to agent-oriented development.



2 A. Freitas et al.

An important contribution of agent-oriented programming as a new paradigm
was to provide ways to help programmers in developing autonomous systems. For
example, agent programming languages typically have high-level programming
constructs which facilitate (compared to traditional programming languages) the
development of systems that are continuously running and reacting to changes in
the dynamic environments where such autonomous systems usually operate [1].
Agent-oriented paradigms are normally used to develop very complex systems,
where not only are many autonomous entities present in a shared environment
but also they need to interact in complex ways and need to have social structures
and norms to regulate the overall social behaviour that is expected of them.

This paper is organised as follows. Section 2 focuses on alternative modelling
approaches for engineering MAS. Section 3 introduces the topic of programming
such systems using JaCaMo. Section 4 presents our model-based techniques to
support code generation for JaCaMo. Section 5 explores the issue of reasoning
with ontology models. In Section 6 we discuss the results of an experiment that
was conducted to evaluate the proposed framework. Section 7 concludes this
paper and highlights some research directions for future work.

2 Multi-Agent Systems Modelling Approaches

Current AOSE methodologies (such as Prometheus [11]) are usually deficient
in at least one area of MAS development [14], such as agent internal design,
interaction design, or organisation modelling. Also, currently we have separate
approaches to address the modelling and programming of MAS, resulting in gaps
and conceptual divergences in AOSE [5, 6]. While JaCaMo [1] is a programming
platform that uses three different formalisms for coding, Prometheus [11] is an
agent modelling approach that does not apply or explore any formal (logic-based)
representation as part of its technique. This work addresses issues stemming from
those facts investigating an ontology-based model-driven engineering approach
as an integrated global model of MAS characteristics, where ontology models
support MAS verification and programming. Although the advantages of on-
tologies for agents are clear, few MAS platforms currently integrate ontology
techniques [5, 14]. Limited ontological support is provided by a number of ex-
isting AOSE methodologies since they do not incorporate ontologies throughout
the entire development lifecycle nor consider ways in which ontologies can be
used to account for interoperability and verification during design [14].

Several models and methodologies can be found in literature to formalise
and define the processes of MAS design and implementation. For example,
Prometheus [11] is one of the best-known MAS modelling methodology for de-
veloping intelligent agent systems. It defines a development process with as-
sociated deliverables for assisting developers to design, document, and build
agent systems based on concepts such as goals, beliefs, plans, and events. The
Prometheus [11] methodology encompasses three phases: system specification, ar-
chitectural design, and detailed design. Among future work for Prometheus [11]
there is the introduction of social concepts to improve its current models, how-



Automatic Generation of Multi-Agent Programs from Ontology Models 3

ever these improvements are not available yet in the latest official version of the
Prometheus Design Tool (PDT). Therefore, some aspects of MAS are not covered
by the models of Prometheus, which also does not explore the use of formal or ex-
plicit ontologies as part of its approach. Ontologies for MAS are being proposed
and investigated to support programming and reasoning over specifications, and
they can also offer code generation features and help in organising the many
concepts involved in the modelling, development, and verification of MAS. In
this direction, ontologies have been considered in several different approaches in
AOSE [5, 10, 15]. Ontologies are defined as knowledge representation structures
composed of concepts, properties, individuals, relationships, and axioms.

It is possible to find in literature ontologies for the environments of MAS [10].
Environments play an essential role in MAS, and their semantic representation
improves the way agents reason about the objects with which they interact
and the overall environment where they are situated. This is important because
most agent-oriented programming languages are weak in allowing the developer
to model the environment within which the agents will execute [2]. The use of an
environment ontology adds three important features to existing multi-agent ap-
proaches [10]: (i) ontologies provide a common vocabulary to enable environment
specification by agent developers (since it explicitly represents the environment
and agent essential properties, defining environments in ontologies facilitates
and improves the development of multi-agent simulations); (ii) an environment
ontology is useful for agents acting in the environment because it provides a com-
mon vocabulary for communication within and about the environment (it allows
interoperability of heterogeneous systems); and (iii) environment ontologies can
be defined in ontology editors with graphical user interfaces, making easier for
those unfamiliar with programming to understand and design such ontologies.

Research on ontologies for MAS environments [10] had already foreseen the
relationship between the environment and other MAS dimensions, since they
mention the intention of looking at higher-level aspects of environments, i.e.,
social environment aspects of agents, such as the specification of social norms
and organisations in agent societies. In fact, on the MAS organisation dimen-
sion, there is a semantic description of MAS organisations [15] formalised in
OWL (Web Ontology Language) to specify an ontology for organisational char-
acteristics of the Moise meta-model. This approach helps agents in becoming
aware, querying, and reasoning about their social and organisational context in
a uniform way, making possible to convert between ontology and Moise spec-
ifications, thus providing more flexibility for modelling and developing in this
domain. This semantic description of Moise [15] provides other benefits such as
increased modularisation, knowledge enriching with meta-data, reuse of specifi-
cations, and easier integration. With the semantic web effort aiming to represent
the information in semantic formats, the MAS community can take advantage of
these new technologies in AOSE development tasks such as to integrate organi-
sational models, to monitor organisations, and to analyse agent societies [15].

Next section introduces the JaCaMo as a unified programming framework
for these MAS characteristics recently discussed.



4 A. Freitas et al.

3 Programming in JaCaMo

MAS programming in JaCaMo [1] requires the development of code in Jason [3],
CArtAgO [13], and Moise [8]. Jason [3] is an AgentSpeak language implementa-
tion that focuses on agent actions and mental concepts and provide to program-
mers features such as speech-act based agent communication, plan annotation,
architecture customisation, distributed execution, extensibility through internal
actions, among other functionalities. On the environment side of agent systems,
CArtAgO [13] is a platform to support the artifact notion in MAS. Artifacts are
function-oriented computational devices which provide services that agents can
exploit to support their individual and social activities [13]. Lastly, the specifi-
cation of agents at the organisation level can be achieved using an organisation
modelling language, such as Moise [8]. Moise explicitly decomposes the specifica-
tion of an organisation into its structural, functional, and normative dimensions.

JaCaMo resulted from one of the earliest approaches aimed at explicitly
investigating the integration of all the dimensions of MAS from a design and
programming point of view. Most previously existing approaches had considered
either only the agent-organisation dimensions, or the agent-environment dimen-
sions [1]. The combination of these dimensions of MAS into a single programming
paradigm with a concrete working platform has a major impact on the ability
to program complex distributed systems. The authors of JaCaMo pointed out,
as future work, the desire for an Integrated Development Environment (IDE)
to facilitate the process of design, development, and execution of JaCaMo ap-
plications, potentially reusing and integrating existing Jason, CArtAgO, and
Moise tools and technologies [1]. Thus, recognising the importance achieved by
JaCaMo, this research direction is one of the motivations in this paper.

JaCaMo is one of the few fully operational platforms combining all three
dimensions of MAS, to the best of our knowledge, and arguably one of the
best-known (e.g., given it is highly cited). Thus, our proposed techniques for
modelling and code generation address the design of MAS with an eye on im-
plementations using JaCaMo as the target programming platform specifically.
However, as noted earlier, the overall approach could also be recreated for other
agent development platforms as well. Other frameworks for MAS development
provide some support for environments, or some organisational notions such as
roles, but without including a fully-fledged organisational model and first-class
environment abstractions that are provided by JaCaMo.

4 Code Generation Techniques for Multi-Agent Systems
Designed as Ontology Models

In this paper we present two different techniques for code generation based on
models specified using an ontology of MAS obtained from the literature [5]. One
technique is the iterative drag-and-drop of elements from ontology to transform
them into the different parts of code that compose a JaCaMo project: Jason,
CArtAgO, Moise, or the jcm file. The other technique is the automatic generation



Automatic Generation of Multi-Agent Programs from Ontology Models 5

of the initial files and code of JaCaMo projects that match the ontology-specified
content. Both techniques are implemented in our tool called Onto2JaCaMo.
This paper employs the ontology of MAS obtained from [5] as the basis for
the code generation techniques, and we refer to it as OntoMAS. For details
about the ontology, we refer to its reference paper, so that we can focus here
on its applications. When using an ontology for modelling MAS, the underlying
idea is that the MAS project conception should start by its modelling as an
ontology. This is done by extending the ontology top-level concepts, and adding
new classes, instances and relationships in order to specify the corresponding
desired project to be implemented in terms of agent-oriented concepts [5].

In OntoMAS, a particular MAS begins to be modelled by extending the on-
tology, which is done by creating new subclasses to its top-level concepts. Then,
individuals are created in the process of instantiating the extended ontology.
From an instantiated model, it is possible to perform reasoning and obtain an
inferred specification. Then, a model specified using OntoMAS can be used in
our techniques for supporting MAS programming, which are incorporated into
the Onto2JaCaMo tool. Such an approach also allows designers to gradually
refine from high-level abstract views to elements directly available in concrete
features of MAS programming platforms. The designers may apply the desired
level of completeness in their models, which will later result in a code with a
corresponding detailing. Figure 1 illustrates how OntoMAS and Onto2JaCaMo
fit in the phases of AOSE in the proposed methodology. Currently, an ontology
editor tool, such as Protégé [9], should be used to interact with OntoMAS during
the MAS modelling.

Fig. 1. Methodology using OntoMAS and Onto2JaCaMo.

4.1 Mapping Elements from the MAS Ontology to JaCaMo Code

Initially, lets make a mapping of where elements from OntoMAS [5] are usually
found in a JaCaMo project. There are concepts to deal with the Agent Dimension
with a clear relation to Jason (such as Agent, Plan, and Belief ), concepts to deal
with the Environment Dimension to establish a relation with CArtAgO (such
as Artifact, Space, and Operation), and concepts to deal with the Organisation
Dimension to address Moise specifications (such as Group, Role, and Norm).



6 A. Freitas et al.

Each subclass of Agent is found in Jason as a .asl file (written in the Jason
dialect of AgentSpeak, while its instances are usually found as the individual
agents defined by an agentID in the .jcm file (the JaCaMo project file). Instances
of Plan are found within the AgentSpeak code of the type of agent that contains
such plan, and instances of Action are found in the body of those plans. Instances
of Goal and Belief take place in AgentSpeak code too. Also, sending a Message
may be a part of an agent’s plan.

Each subclass of Artifact is found in CArtAgO as a Java class, and instances
of Artifact subclasses represents an object/tool/resource of that type, which
may be found in JaCaMo in the .jcm file that describes the initial artifacts of a
system; however, other artifacts instances may be created after the initialisation
of the MAS. Spaces are initialised in the JaCaMo project file, but agents may
make reference to spaces in their code too. Operations are found in CArtAgO as
methods of the artifact that implements such procedures. Instances of Percept
(ObservableProperty or ObservableEvent) are found in the Java code of artifacts
through methods provided by the CArtAgO API to manipulate them (such as
defineObsProperty, getObsProperty, updateObsProperty, and signal).

Subclasses of Group can be found in the XML that specifies an organisation
in Moise, and their instances take place in the JaCaMo project file, as well
as in the code of agents in Jason that can make references to groups (e.g.,
join_group). Instances of Role are found in the Moise XML file, and the code of
Jason agents can make reference to such roles too (e.g., adopt_role). Instances
of OrganisationGoal are also found in the Moise file, and the code of agents in
Jason can make references to those goals (for example, agents may have plans
to act when a goal is assigned to them by the organisation). Lastly, instances of
Missions and Norms are defined in the Moise XML file of a JaCaMo system.

4.2 Drag-and-Drop Transformation Technique from the
Multi-Agent Systems Ontology to JaCaMo

The idea of using an ontology for providing drag-and-drop operations from mod-
els to code in JaCaMo has been already mentioned in literature [5]. In this paper
we explain how the elements of an ontology model can be dragged to generate
code for the different parts of JaCaMo, such as Jason, CArtAgO, Moise, or the
JaCaMo project file that defines the specification that initialises the correspond-
ing system. Each element from an ontology model can be transformed in MAS
code in several different ways.

To exemplify the drag-and-drop conversions, let us take a look at how in-
stances of the ObservableProperty concept may be employed in the code of
each of the different parts of JaCaMo. Suppose there is an instance of Ob-
servableProperty called temperature, defined at the Environment Dimension.
If a programmer makes a drag-and-drop of temperature in this dimension, a
code automatically created as suggestion may be to update the value of such
observable property. Thus, the following code can be created:

getObsProperty(temperature).updateValue(newValue);



Automatic Generation of Multi-Agent Programs from Ontology Models 7

In Jason, making a drag-and-drop using this same instance ofObservableProp-
erty may give origin to a plan triggered by the observation of such property:

+temperature : true <- planBody.

However, if dropped in the middle of a plan, then just the corresponding
belief identified by temperature is generated. When a JaCaMo system is running,
the observable properties provided by environmental artifacts become beliefs to
agents that are focusing on those artifacts, and when they become beliefs, some
plans may be triggered by the belief addition event. Instances of observable
properties are not applicable for drag-and-drop code transformations in the case
of Moise or JaCaMo project file. We have summarised the information about
the drag-and-drop operations provided by Onto2JaCaMo for transforming from
the ontology to JaCaMo code in Table 1. This table shows the generation when
the desired outcome is the Agent Dimension of JaCaMo (i.e., Jason). Similarly,
there are strategies to convert the ontology to the Environment Dimension of
JaCaMo (CArtAgO), to the Organisation Dimension (Moise), and also to the
initialisation setup of JaCaMo (the .jcm file). However, the tables illustrating
these other mappings were not included in this paper for the sake of space.

4.3 Core Code Generation Technique from OntoMAS to JaCaMo

The technique proposed in this subsection is related to the idea of using an on-
tology for the automatic generation of skeleton code for each of the JaCaMo
languages. Elements from an ontology of MAS should have their resulting code
counterparts in Jason, CArtAgO, and Moise. Therefore, it would be possible
to directly transform an ontology-based MAS specification into initial code for
JaCaMo. While when using drag-and-drop programmers are iteratively trans-
forming elements from their ontology model into code, this code generation
technique uses another perspective, which is to generate an initial structure of a
corresponding project in JaCaMo to what is specified in the ontology model.

The generation of initial agent files and code for Jason considers mainly the
subclasses and instances of the Agent Dimension of the employed ontology. For
example, each subclass of Agent becomes an .asl file with its corresponding
plans, actions, goals, beliefs, and messages. However, characteristics defined at
other dimensions, such as the environment, although not directly applicable
to generate the initial code at the agent level, may be considered to suggest
implementation alternatives for programmers (at least for them to be aware of).
For example, for an agent that is expected to receive a given percept, a plan
triggered by the addition event of that percept may be suggested as a situation
that programmers are likely to have to handle.

Similarly, the initial files of the CArtAgO part of a JaCaMo project derive
mainly from the Environment Dimension of the ontology in use, and the Moise
initial code is generated based the Organisation Dimension. Subclasses of Arti-
fact become the Java files with their corresponding operations as methods, and
observable properties are initialised. All the organisation elements (subclasses,
instances, and relationships) are considered in the generation of the initial XML



8 A. Freitas et al.

T
ab

le
1.

D
rag-and-drop

code
generation

for
Jason

(A
gent

D
im

ension
)
from

ontology
elem

ents.
In

stan
ce

of
th

e
O

ntology
E
lem

ent
D

rag-an
d
-D

rop
C

od
e

for
Jason

E
xp

lan
ation

A
gent

D
im

en
sion

E
xtern

alA
ction

actionName();
an

externalaction
invocation

inside
a
plan’s

body
representing

an
agent

acting
in

the
environm

ent.

Intern
alA

ction
.actionName();

an
internalaction

invocation
inside

a
plan’s

body
representing

an
action

that
an

agent
perform

s
m
entally.

A
gent

agentName
the

identification
of

the
individualagent

in
order

to
send

m
essages,or

perform
som

e
other

tasks.

B
elief

+beliefName[source(value)];
a
belief

addition
event

w
ith

source’s
value

defined
by

the
belief’s

subtype:self,percept,or
other

agent.

A
ch

ievem
entG

oal
!achievementGoalName;

an
initialgoalfor

that
agent;or

a
goalthat

has
to

be
achieved

during
the

execution
a
plan.

T
estG

oal
?testGoalName;

a
goalthat

has
to

be
tested

during
the

execution
of

a
plan.

M
essage

send(receiver,illocutionaryForce,
propositionalContent);

the
act

of
sending

the
corresponding

instance
of

m
essage

P
lan

is_triggered_by
:

true
<-

actions;
goals.

a
plan

w
ith

its
triggering

condition,context
(that

by
default

is
true),and

a
body

com
posed

(m
ainly)

of
actions

and
goals.

E
nviron

m
ent

D
im

en
sion

S
p
ace

joinWorkspace("workspaceName");
an

action
for

that
agent

to
join

the
corresponding

w
orkspace.

A
rtifact

focus(artifactName);
the

action
of

focusing
on

that
instance

of
artifact.

O
p
eration

operationName();
the

invocation
of

the
corresponding

operation
in

the
body

of
a

plan
representing

the
execution

of
that

operation
by

an
agent.

O
b
servab

leP
rop

erty
+propertyName

:
true

<-
planBody.

a
plan

triggered
by

the
observation

of
the

corresponding
property.

O
b
servab

leE
vent

+eventName
:

true
<-

planBody.
a
plan

triggered
by

the
observation

of
the

corresponding
event.

O
rgan

isation
D

im
en

sion
G

rou
p

join_group(groupName);
an

action
of

joining
in

the
given

group.
R

ole
adopt_role(roleName,groupName);

the
action

to
adopt

the
given

role
in

the
specified

group.

M
ission

commit_mission(missionName,
schemeId);

an
action

to
com

m
it

w
ith

the
instance

of
m
ission

in
the

given
schem

e.
N

orm
+normName:

true
<-

planBody.
a
plan

triggered
by

the
perception

of
the

given
norm

.
O

rgan
isation

G
oal

+!goalName
:

true
<-

planBody.
a
plan

triggered
by

the
addition

event
of

the
specified

goal.



Automatic Generation of Multi-Agent Programs from Ontology Models 9

file of a Moise organisation. Lastly, the JaCaMo project file considers character-
istics from all the three dimensions, and relationships from their integration.

To exemplify the initial project generation, consider the ObservableProperty
instance used in previous examples, temperature. If it is said that an artifact
type (e.g., computer) has this property, then such observable property definition
must compose the init() method of the computer artifact class in the format:

defineObsProperty("temperature", initialValue);

Considering Jason, Moise, or .jcm files, instances of observable properties are
not directly applicable for the automatic code generation in this case. However,
a plan triggered by the addition event of the related observable property could
be suggested to the agents’ programmers as a situation worth to be handled.

How each element from OntoMAS models can be transformed into the initial
structure of files and code for Jason is shown in Table 2. This same principle
is applied to CArtAgO, Moise, and the project file, albeit, it is not possible to
illustrate all those tables in this paper. However, we have complete definitions
for OntoMAS models as starting point to generate skeleton code for each part
of JaCaMo programming (Jason, CArtAgO, Moise, and the .jcm project file).

The so-called core code generation technique presented in this subsection
creates the first skeleton code for a JaCaMo project that was modelled using the
OntoMAS ontology. The drag-and-drop technique is a way to complement and
iteratively evolve the programming of such systems. Compared to a fully hand-
written code, developers would lack tools that could provide means to integrate
the modelling and programming of their MAS.

4.4 The Onto2JaCaMo Tool for Multi-Agent Systems Development

For effective and efficient software development, preferably all tasks and activities
during the development process should be adequately supported by tools [12].
The quality of any software tool support can be assessed by considering the
degree of support for the different phases and tasks [12], e.g., design tools, which
besides the creation and editing of design models also often support consistency
checking and/or code generation.

We have implemented the techniques previously explained in subsections 4.2
and 4.3 in a software tool to support MAS development, which we refer to as
Onto2JaCaMo. It consists of a plug-in for Eclipse that loads instantiated models
based on the ontology of MAS obtained from [5] to provide code generation
for JaCaMo. Eclipse [4] is an open source software development project that
provides an IDE in which a basic unit of function, or a component, is called a
plug-in. Eclipse is already the standard IDE for JaCaMo development, and it
was indeed an interesting choice since Eclipse is recognised as a mature IDE,
and one of the most widely used by programmers [12].

Onto2JaCaMo is easily installed by adding its .jar file in the Eclipse plug-ins
folder. It can be activated to appear visually in the graphical interface of Eclipse
by following this sequence: Window → Show V iew → Other... → JaCaMo
Ontology → Ok. When it is enabled, Onto2JaCaMo requests to be informed



10 A. Freitas et al.

T
ab

le
2.

T
em

plate
core

code
generation

for
Jason

(A
gent

D
im

ension
)
from

ontology
elem

ents.
In

stan
ce

of
th

e
O

ntology
E
lem

ent
B

ase
C

od
e

for
Jason

E
xp

lan
ation

A
gent

D
im

en
sion

A
gent

(su
b
class)

agentSubclass.asl
file

a
type

of
agent

that
contains

allrelated
elem

ents
such

as
plans,goals,and

beliefs.

B
elief

beliefName[source(value)]
an

initialbelief
in

the
corresponding

.aslfile
w
ith

the
source’s

value
defined

by
the

belief’s
type

(self,percept,or
other

agent).
A

ch
ievem

entG
oal

!achievementGoal.
an

initialachievem
ent

goalin
the

corresponding
.aslfile.

M
essage

!sendMsgName
<-

.send(receiver,illocForce,
propositionalContent);

a
plan

to
send

the
corresponding

m
essage.A

plan
for

the
receiver

agent
m
ay

be
created

using
as

triggering
condition

the
given

propositionalC
oncent

and
illocutionaryForce.

P
lan

+is_triggered_by
:

true
<-

actions,
goals.

a
plan

in
w
hich

it
has

a
triggering

condition,a
context,and

a
body

com
posed

(m
ainly)

of
actions

and
goals.T

he
plan

is
inserted

in
the

.asl
file

of
the

agent
type

that
has

it.
E
xtern

alA
ction

,
Intern

alA
ction

,
T
estG

oal,
A

gent
not

directly
applicable

for
autom

atic
code

generation
for

Jason.

E
nviron

m
ent

D
im

en
sion

O
b
servab

leP
rop

erty
+propName

:
true

<-
planBody.

it
is

not
directly

applicable
for

autom
atic

code
generation.

H
ow

ever,a
plan

triggered
by

the
addition

event
of

the
related

observable
property

m
ay

be
suggested

as
a

situation
that

is
likely

desired
to

be
handled.

O
b
servab

leE
vent

+eventName
:

true
<-

planBody.
it

m
ay

be
suggested

(how
ever,it

is
not

m
andatory)

a
plan

triggered
by

the
observation

of
the

corresponding
event.

S
p
ace,

A
rtifact

(in
stan

ce
an

d
su

b
class),

O
p
eration

not
directly

applicable
for

autom
atic

code
generation

for
Jason.

O
rgan

isation
D

im
en

sion
G

rou
p

(in
stan

ce
an

d
su

b
class),

R
ole,

M
ission

,
N

orm
,

O
rgan

isation
G

oal
not

directly
applicable

for
autom

atic
code

generation
for

Jason.



Automatic Generation of Multi-Agent Programs from Ontology Models 11

about the OWL file corresponding to an instantiated ontology so that it can
be loaded. The plug-in was designed to be used in the “JaCaMo Perspective”
of Eclipse (or related perspectives, such as Jason). The tool loads OWL ontolo-
gies and provides three model-based programming features to generate MAS
code: drag-and-drop, conversion from ontology to code, and auto-complete from
instantiated ontologies.

In the drag-and-drop functionality, the developer can visualise and navigate
through the ontology concepts, instances, and properties. These elements from
the model can be dragged to the code in files being edited in Eclipse. For exam-
ple, the programmer may perform a dragging and dropping operation using the
action pass_ball to be inserted in a plan of agents of type “player”. Similarly,
it is possible to provide developers the auto-complete feature from ontology to
agent code, which is activated when the developer is typing MAS code (or press
the auto-complete shortcut: “ctrl + space”). Then, the available options based on
the ontology are presented to programmers as suggestions. One example is when
coding the plan’s context, which may be composed of ontology-based queries
(e.g., verifying if an individual belongs to a concept).

The Onto2JaCaMo tool is able to generate code fragments based on design
information, which is known as forward engineering [12]. This is in the oppo-
site direction of extracting design information out of existing application code,
the so called reverse engineering. A drawback of forward or reverse engineering
techniques is that after a generated artifact has been changed manually, forward
or reverse engineering cannot be reapplied without losing the changes, as stated
in the called “post editing problem”. The combined support of forward and re-
verse engineering, such that changes in one artifact can always be merged into
the other without compromising consistency or losing changes, is referred to as
round-trip engineering [12]. The Onto2JaCaMo tool presented in this work does
not address such advanced and complex concepts of synchronisation as yet; these
are, however, interesting topics for future work.

5 Ontology-based Reasoning Support for Agent Systems

Model verification refers to the processes and techniques that the model devel-
oper uses to ensure that their model is correct and matches any agreed-upon
specifications and assumptions. OntoMAS can be explored with its available
reasoning mechanisms to implement model verification in the context of MAS.
The literature reports that most practical approaches for verification of MAS
are done on code, and most of the work done on model checking within the
MAS research area is quite theoretical [2]. However, there are approaches that
use model checkers typically to verify properties of particular aspects of a given
MAS. While this has the advantage of proving properties of systems that will
be deployed, it is also often useful to check properties during systems’ design.

Considering this context, semantic reasoners may provide, for example, con-
sistency checking and inferences about the MAS specified as an ontology. On-
tologies empower the execution of semantic reasoners that provide functionalities



12 A. Freitas et al.

such as consistency checking, concept satisfiability, classification, and realisation.
In other words, reasoners are able to automatically infer logical consequences
from a set of axioms. The possibility to reason about the model can provide sup-
port for various consistency checks during the MAS project design and imple-
mentation. For example, when considering only MAS organisations, it is possible
to check for conflicts considering the existing norms, roles, and missions. When
an instantiation of MAS organisation is combined with instantiated agents, it
is possible to check for other kinds of inconsistencies integrating information
from more than one dimension, such as whether the agents contain the required
capabilities to achieve the existing organisation goals. Organisation goals are as-
signed to agents playing the organisation roles, and an agent playing a specific
role may not have the required plans to achieve the goals that the organisation
will assign to it. Reasoning can be applied also to verify consistency among the
norms in the organisation. The combination of some norms can result in contra-
dictions, for example, when a prohibition occurs together with an obligation or
permission. These contradictions can appear when considering the missions of
just one isolated role, or when combining the missions of two or more roles.

When analysing the knowledge about the environment, it can be checked
whether agent actions are valid in a given environment configuration. If there is
an agent action that does not exist in the environment, the invocation of such an
action in run-time will result in failure. Thus, the verification of characteristics
over instantiated model at design time may prevent future errors to happen
during the execution time of the corresponding JaCaMo specified project.

The use of ontology enables the creation of rules, which can be coded in the
Semantic Web Rule Language (SWRL). Such rules can be inherited from the base
OntoMAS ontology, and new ones can be added specifically for an extension and
instantiation of OntoMAS, when defining a desired MAS scenario. All elements in
the ontology are taken into consideration when semantic reasoners are executed
for making inferences. For example, one general rule is that if an agent a is in a
space s, and this space s can provide an observable property p, then it can be
inferred that the agent a is able to perceive p if it chooses to do so. This rule is
coded as follows:

is-in(?a,?s), provides-percept(?s,?p) -> can-perceive(?a,?p).

In such reasoning mechanism it is possible to relate elements from any di-
mension (e.g., agent) with elements from other dimensions (e.g., environment).
Lets suppose now a more complex example for inferences about a modelled MAS.
We already commented that agents join organisations by playing organisation-
defined roles, and it is expected that such agents have in their codes the required
plans to handle the goals that the organisation may assign to them. Organisa-
tion goals are assigned to agents, for example, if there is an obligation norm on
that role, and an agent that adopted such role should have a plan for achiev-
ing that goal. Lets represent this with a new property to specify that Agents
should-have-plan-for Goals. This can be inferred, for example, if there is an
obligation norm n that targets a role r, and there is an agent a that adopts the



Automatic Generation of Multi-Agent Programs from Ontology Models 13

role r, then, the conclusion is that the agent a should have a plan for the goal
g, where g is a goal from mission m, which is the mission for the obligation norm
n. The following rule exemplifies how to make this inference:

ObligationNorm(?n), targets-role(?n,?r), adopts-role(?a,?r),
targets-mission(?n,?m), has-goal(?m,?g) ->

should-have-plan-for(?a,?g).

As we have exemplified using some rules in this subsection, more complex
information can be incrementally inferred from the basic conceptualisation pro-
posed by OntoMAS. Also, it allows extensions to be made on top of it, by
including for example new concepts, properties, and so on.

As another example, it can be inferred which operations and percepts can be
obtained from each space based on which artifacts are situated in it (the concept
of Space from the ontology refers to the called Workspaces of CArtAgO). A rule
may be used as follows:

contains-artifact(?s,?a), provides-percept(?a,?p) ->
provides-percept(?s,?p).

This rule can be read as: if the space s contains an artifact a, and a provides a
percept p, then s provides p. The same reasoning principle applies to operations
from artifacts that are located in some space. Moreover, another general rule
about environments is that the percepts and operations of sub-spaces are also
provided by the spaces that contain them.

6 Evaluating Onto2JaCaMo

Our initial evaluation of Onto2JaCaMo indicates that it facilitates coding in
JaCaMo, mainly for beginners or for those who are not fully aware about how
to implement some agent concepts. Users have reported that it improves the
understanding about the operation of JaCaMo and how to program particular
behaviours. Also, Onto2JaCaMo helps avoid syntactical errors as it provides code
templates, which is important because the auto-complete shortcut from Eclipse
(“ctrl + space”) does not work in all JaCaMo extensions. Thus, more agility
can be obtained in JaCaMo code generation. Lastly, during development, it is
interesting to visualise the system’s ontology, so that the idea defined in models
may be followed easier when programming. Most importantly, it avoids some of
the most common types of bugs made by programmers such as mistyping names
since now the ontology provides the vocabulary to be used in the code.

Before starting our experiments regarding the evaluation of the programming
techniques implemented in Onto2JaCaMo, the participants received the required
prior instructions on these topics in order to perform the tasks with the minimum
required knowledge, such as, for example, how to load and how to use ontology
models in Onto2JaCaMo. The participants received the Onto2JaCaMo plug-
in, where they had to load their previously instantiated ontology models and
use the tool to support the model-based development of their agent code. Each



14 A. Freitas et al.

participant had previously defined their own application scenario to work with.
After finishing the programming of their MAS using the drag-and-drop provided
by Onto2JaCaMo, the participants were surveyed by means of questionnaires to
extract their perceptions and opinions about the techniques and tool according
with statements that followed a 5-point Likert scale. Some criteria have received
only positive evaluations from all participants, such as that Onto2JaCaMo is easy
to understand, provides coding support, offers advantages for programming, and
enables a better understanding of JaCaMo.

Thus, we observe that the proposed plug-in helps in code consistency (e.g., it
facilitates coding using the same terms), and it prevents developers from using
terms outside the ontology-based model. In summary, such approach provides an
overview about agent systems to be visualised within the programming context,
combined with features of dragging content from models to MAS code. As lessons
learned from our practical experiences, we have observed that more MAS code
could be generated from the proposed modelling approach, and that the ontology
could be used in a technique to constrain the MAS coding (i.e., to indicate
errors or mismatches between model and code). Also as future work, we have
noticed that Onto2JaCaMo could provide model editing features (for example,
to include new instances), which would discard the need of an ontology editing
tool to update the ontology model. Another point for improvement that was
highlighted by our practices, although a very complex one, is the automatic
update of the ontology when the MAS code changes [5], in the direction of
synchronising model and code. This might be solved by implementing features
to highlight mismatches between MAS code and its corresponding model in order
to keep both aligned.

In a last part of our experiments, the participants created theirs models and
later programmed manually their code, which means without using the core
code generation mechanism. That allowed us to compare the code that our tech-
nique creates automatically from the ontology models with the code actually
programmed by the participants. Through these comparisons, we have observed
the correspondences and similarities between elements in the code that was au-
tomatically generated from the specification in contrast with the code that was
manually programmed. These similarities between these two sources of code are
indicative of the correctness of the proposed model-based code generation tech-
nique. We have analysed that some key elements in the ontology models created
by the participants, the corresponding code that was automatically generated
from these elements by using the proposed techniques, and the code actually
programmed by them. We were able to confirm that the model-based technique
for generating code is indeed offering a program reasonably similar to the code
structured created by the programmer1, given the analysed aspects. We argue
that if the starting codes were created based on converting their correspond-
ing models, then it would be easier for programmers to align their initial code

1 The model is at a higher abstraction level than the code, so sometimes only a struc-
ture or code skeleton can be created and programmers have to complete it in order
to obtain a fully executable and running system.



Automatic Generation of Multi-Agent Programs from Ontology Models 15

with the design and continue their programming based on that. The similarities
between what can be automatically generated with what was manually created
indicate that the code generation is in the correct direction and it provides more
agility for developers that have their systems modelled before they start coding.

7 Final Remarks

In this paper, we have proposed development techniques focusing on the JaCaMo
platform, on the basis of ontologies that support the modelling and program-
ming of MAS. Our proposal considers MAS designed as ontology models as the
foundation for a MAS engineering process that allows core code generation for
JaCaMo [1]. We have explored the research direction of reasoning with these
ontology models, which allows the implementation of inference mechanisms in
agent-based systems such as for example to reason about action, plans, knowl-
edge, beliefs, goals, and norms in MAS. We believe that producing software code
for complex and highly detailed systems directly in programming environments
by first using a specification, modelling, or design mechanism may avoid many
problems. Without a proper modelling of the system, it may be difficult to find
potential bugs when they eventually appear in the implementation. Features de-
rived from our approach are techniques for: (i) integrating design and code; (ii)
supporting MAS programming with automatic code generation through model-
based development; and (iii) performing verification with focus on the use of
semantic reasoning and model checking.

Ontologies that serve as the basis of agent models could also inform agents
in reasoning about their own system or even other systems or projects. These
would allow agents to be able to share their implementation with others, or to
execute inferences about its own implementation. In this context, an approach
that provides for MAS the ability to interact with ontologies may be applied [7].
As future experiments, it would be interesting to consider more complex and dis-
tributed scenarios of software development, for example where teams of software
engineers need to work together to develop a single MAS. These teams would
be composed of persons playing different roles such as requirement engineer,
designer, programmer, etc.

In this context, it should be investigated how much a modelling and program-
ming approach that is based on an ontology would help the team to communicate,
synchronise, and coordinate the development of the desired MAS. Moreover, a
viewpoint that should also be considered in future work is the comparison be-
tween using and not using the approach proposed in this paper (similar to what
is done with experiments conducted on the basis of a control group). Moreover,
as we have highlighted throughout this paper, new features may be added to
Onto2JaCaMo, such as refactoring mechanisms for model and code synchroni-
sation. Another related point would be to automatically identify mismatches
between current MAS code and its corresponding model. That would contribute
towards implementing round-trip engineering features in the context of MAS
development (i.e., the combined use of forward and reverse engineering).



16 A. Freitas et al.

References

1. Boissier, O., Bordini, R.H., Hübner, J., Ricci, A., Santi, A.: Multi-agent oriented
programming with JaCaMo. Science of Computer Programming 78(6), 747–761
(2013)

2. Bordini, R.H., Dastani, M., Winikoff, M.: Current issues in multi-agent systems
development. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.)
Engineering Societies in the Agents World. Lecture Notes in Computer Science,
vol. 4457, pp. 38–61. Springer (2006)

3. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems
in AgentSpeak using Jason. John Wiley & Sons (2007)

4. Budinsky, F.: Eclipse Modeling Framework: A Developers Guide. The eclipse series,
Addison-Wesley (2004)

5. Freitas, A., Bordini, R.H., Vieira, R.: Model-driven engineering of multi-agent sys-
tems based on ontologies. Applied Ontology Journal 12, 157–188 (2017)

6. Freitas, A., Cardoso, R.C., Vieira, R., Bordini, R.H.: Limitations and divergences in
approaches for agent-oriented modelling and programming. In: Baldoni, M., Müller,
J.P., Nunes, I., Zalila-Wenkstern, R. (eds.) International Workshop on Engineering
Multi-Agent Systems. pp. 88–103 (2016)

7. Freitas, A., Panisson, A.R., Hilgert, L., Meneguzzi, F., Vieira, R., Bordini, R.H.:
Applying ontologies to the development and execution of multi-agent systems. Web
Intelligence Journal 15(4), 291–302 (2017)

8. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organ-
isations with organisational artifacts and agents. Autonomous Agents and Multi-
Agent Systems 20(3), 369–400 (2010)

9. Musen, M.A.: The Protégé project: A look back and a look forward. AI Matters
1(4), 4–12 (2015)

10. Okuyama, F.Y., Vieira, R., Bordini, R.H., da Rocha Costa, A.C.: An ontology for
defining environments within multi-agent simulations. In: Workshop on Ontologies
and Metamodeling in Software and Data Engineering (2006)

11. Padgham, L., Winikoff, M.: Prometheus: A methodology for developing intelligent
agents. In: Giunchiglia, F., Odell, J., WeiB, G. (eds.) Agent-Oriented Software
Engineering III. LNCS, vol. 2585, pp. 174–185. Springer (2003)

12. Pokahr, A., Braubach, L.: A survey of agent-oriented development tools. In: Fallah-
Seghrouchni, A.E., Dix, J., Dastani, M., Bordini, R.H. (eds.) Multi-Agent Program-
ming, Languages, Tools and Applications., pp. 289–329. Springer (2009)

13. Ricci, A., Viroli, M., Omicini, A.: CArtAgO: an infrastructure for engineering com-
putational environments in MAS. In: Weyns, D., Parunak, H.V.D., Michel, F.
(eds.) International Workshop Environments for Multi-Agent Systems. pp. 102–
119 (2006)

14. Tran, Q.N.N., Low, G.: MOBMAS: A methodology for ontology-based multi-agent
systems development. Information and Software Technology Journal 50(7-8), 697–
722 (2008)

15. Zarafin, A.M.: Semantic Description of Multi-Agent Organizations. Master’s thesis,
Automatic Control and Computers Faculty, Computer Science and Engineering
Department – Politehnica University of Bucharest (2012)


