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Abstract. The GAMA platform supports simulation with a bottom-up
design from an agent perspective using a BDI framework. This paper
proposes a design for implementing the AORTA framework for organiza-
tional reasoning in the GAMA platform to support combining a bottom-
up BDI models with a top-down organizational model. The contribution
is twofold: an operational semantics of the BDI framework in the GAMA
platform, and an extension of it with operational semantics of AORTA.

1 Introduction

Social systems are systems which involve human interaction and decision mak-
ing. Examples of social systems include private organizations, city regions and
countries. Gaining insight into such systems is necessary for identifying work-
flows, bottlenecks and other important properties, but it is difficult because of
the non-linearity of the systems. Agent-based simulation is an approach to gain-
ing insight based on analysis of multiple runs of virtual simulation with agents
that represent the real world actors in a social system. The advantage of the
approach is that the designer of the simulation can focus on modeling the agents
and have the system emerge as a result of their interaction, rather than having to
model the system as an overall process. Agent-based simulation platforms, such
as GAMA, provide general purpose tools to create environments and agents for
any domain. In particular the BDI programming paradigm, which is also sup-
ported in GAMA, is a simple tool for modeling human reasoning in the agents.
As argued in [1] however, the advances made in AI with frameworks and meta-
models for agent environments and social systems could be further leveraged in
agent-based simulation. In particular, the AORTA framework for adding organi-
zational reasoning to agents can be useful for studying environments where hu-
mans enact roles and solve objectives of an organization. It enables BDI agents,
modeled from a bottom-up perspective, to include organizational knowledge,
modeled from a top-down perspective, in their reasoning and decision making.
GAMA has useful features for setting up a simulation environment with geodata
and supports BDI but has no development of organizational reasoning. We con-
tribute to the development in two parts: we provide an operational semantics
of the GAMA BDI agents and extend it with concepts and rules based on the
operational semantics of the AORTA framework.
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2 Background

First we present some background on the GAMA platform and AORTA.

2.1 BDI agents in GAMA

GAMA agents are programmed in the GAML language for programming reflex-
ive agents [2,3]. The simple-bdi module extends agents with BDI-based behavior.
The module is developed with efficiency and easy-of-use for simulation creators
in mind. Core concepts of BDI agents in GAMA:

– Simulation environment - The agents are spatially situated in a simulation
environment that controls time and synchronizes agent execution.

– Belief base - A set of predicates that define the agent’s internal knowledge
about the world or its own state.

– Desires - A set of predicates that define the things that the agent wants.
– Intentions - A set of predicates that define the things that the agent is

actively trying to achieve.
– Perception statements - Statements that the agent uses to observe changes

in the world and update its knowledge base accordingly.
– Rule statements - Statements that the agent uses to infer new knowledge.
– Plan statements - Statements that the agent uses to perform actions toward

achieving specific intentions.
– Agent properties - An agent has properties similar to that of an object in

OOP. An agent can update and check both its own properties and properties
of other agents.

In each step of the simulation, every agent (i) perceives the environment and
updates beliefs, (ii) continues its current plan if it is not finished, or (iii) selects
a new plan and possibly new intention and executes that plan. Figure 1 shows a
simplified diagram of the agent behavior, which is our outset for the operational
semantics we present in Section 3. We refer to [2] for the full diagram.

Fig. 1. Flowchart of agent behavior in GAMA.
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2.2 AORTA

AORTA extends BDI agents with organizational reasoning capabilities accord-
ing to the OperA meta-model [4], which gives a way of including a top-down
model in a multi-agent system. Agents keep the model in the form of an organi-
zational knowledge base that they maintain separately from their internal agent
knowledge base. We highlight the parts of the operational semantics of AORTA
that we extend GAMA agents with and refer to [5] for the full definitions.

Agent Configuration The mental state of an agent is based on knowledge
bases MSAORTA = 〈Σa, Γa, Σo, Γo〉 where Σa and Γa are its beliefs and inten-
tions, Σo is its organizational state and Γo are its organizational options. The
mental state thus ensures that an agent can separate organizational and per-
sonal knowledge, and it is possible for agents to have different beliefs about an
organization.

An agent configuration is defined as A = 〈α,MSAORTA, AR, F,C, µ〉 where
α is the name of the agent, MSAORTA is its mental state, AR are its reasoning
rules, F is a set of transitioning functions, C are the capabilities of the agent,
and µ = 〈µin, µout〉 is its mailbox. Intuitively the agent configuration defines the
state of the agent.

Transition System The semantics of AORTA is defined in terms of a transition
system that transforms the agent configuration in a sequence of phases. In the
obligation execution phase, the agent performs an obligation check where it
adds activated obligations or obligation violations to Σo, and retracts satisfied
obligations from Σo.

Obl ::= Obl-Activated∗; Obl-Violated∗; Obl-Satisfied∗

In the option execution phase, the agent generates organizational options and
adds them to Γo. It can enact or deact a role, perform an objective, delegate
objectives to other agents it depends on or inform others that depend on it about
an objective.

Opt ::= Enact∗; Deact∗; Objective∗; Delegate∗; Inform∗

In the action execution phase, the agent considers its options, decides on a
matching action reasoning rule to execute, and then executes the associated
action. Executing an action updates both Σo and Γo.

Act ::= (Act-Exec|Act-Send|No-Op)

External changes are handled in the (Ext) rule, and incoming messages are
handled in the (Check) rule.

(Ext) :
MSAORTA → MS′AORTA

(Check) :
msg(sender,msg) ∈ µin M (sender,msg,MSAORTA) = MS′AORTA

µin → µin \ {msg(sender,msg)} MSAORTA → MS′AORTA
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Bringing it all together, the organizational cycle execution is defined as follows.

Org ::= Check∗; Ext; Obl; Opt; Act

3 Operational Semantics for AORTA Agents in GAMA

We give an operational semantics for AORTA in GAMA, which comprises a
design for implementing AORTA in GAMA.

3.1 GAMA BDI operational semantics

Given the list of concepts for GAMA BDI agents and the diagram in Figure 1,
we write an operational semantics that we then extend with AORTA semantics.

We define an agent as Agent = 〈P,MSGAMA, Q,R,Π〉 where P is a set of
properties, MSGAMA = 〈B,D, I〉 (with B, D and I being sets of predicates),
Q is a set of Perception statements, R is a set of Rule statements and Π is
a set of Plan statements of the form t : c → S, where t is a trigger intention,
c is a condition that must be true for the plan to be applicable, and S is a
sequence of action statements. In GAMA, agents can read meta-data from the
simulation environment such as the step counter or time between steps. For the
purpose of extending with AORTA semantics however, we simplify the simulation
environment Env to be the set of all agents in the simulation Env : Agent set.

Given the above definition of an agent and the environment, we can define
the BDI reasoning in GAMA in terms of functions on its mental state, applying
statements relevant to that step. Perception and Rule application include the
simulation environment and agent properties as an agent can perceive not only
other agents in the environment but also its own properties.

Perception ::= Q,Env,MSGAMA, P → MS′GAMA

Rule application ::= R,Env,MSGAMA, P → MS′GAMA

Intention selection ::= MSGAMA, Icur → I ′cur

Plan selection ::= Π, Icur,MSGAMA → Πsel

Having selected a plan to execute, the agent executes it which yields a new
environment (and hence updated agents).

Plan execution ::= Πsel, Env → Env′

Given the above definitions, the activity semantics of a GAMA agent can be
defined as the following sequence. If the selected plan is instantaneous, the agent
may execute multiple plans for multiple intentions within one step.

Act ::= Perception; Rule application;

(Intention selection; Plan selection; Plan execution)∗
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3.2 Extending with AORTA semantics

Having defined an operational semantics of GAMA BDI agents, we proceed by
defining the AORTA agent semantics in terms of the GAMA BDI semantics. Do-
ing so comprises a design for how the semantics can be implemented in GAMA.

First we define the mental state and the agent configuration. We use a naming
scheme to separate organizational beliefs and goals from regular beliefs and
intentions.

(Σa) :
b ∈ B prefix(pred(b)) 6= O

b ∈ Σa
(Γa) :

i ∈ I prefix(pred(i)) 6= O

i ∈ Γa

(Σo) :
b ∈ B prefix(pred(b)) = O

b ∈ Σo
(Γo) :

i ∈ I prefix(pred(i)) = O

i ∈ Γa

Next we define the name of an agent as simply the name property of the agents.

α = agent.name

The action reasoning rules AR are used in the Act phase to select an option,
among those found in the Opt phase, and execute the action associated with that
option. For example if the action is enact(ρ), the agent adds rea(α, ρ) to Σo, and
adds send(>, tell, rea(α, ρ)) to Γo. We define the reasoning rules in GAMA as
a subset of instantaneous Plan statements that add intentions to Γa matching
the action reasoning rules. We also use instantaneous Plan statements to define
the set of transition functions of AORTA.

AR ⊆ Π F ⊆ Π

The capabilities of an agent are defined as the triggers of the plans in its plan
library Π. Note that this is only a subset of the beliefs that the agent can make
true, as carrying out a plan typically has side effects, but for simplicity we do
not include beliefs from side effects in Π.

(C) :
t : c→ S ∈ Π

t ∈ C
As with the mental state, the mailbox is defined using a naming scheme that
separates mailbox beliefs from regular beliefs.

(µin) :
b ∈ B prefix(pred(b)) = muIn

b ∈ µin

(µout) :
b ∈ B prefix(pred(b)) = muOut

b ∈ µout

Next we extend with the AORTA transition system.

Obligation execution We integrate obligation execution in the rule application
step in GAMA, using the above definition of Σo and α. For simplicity, we only
make Rule statements with grounded predicates, meaning that we need a state-
ment for each grounded premises for both (Obl-Activated), (Obl-Satisfied) and
(Obl-violated).
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Option execution We also integrate option generation in the rule application
step, with Rule statements that add new predicates to Σo, Γo and α.

Action execution We integrate action execution in the looping part of the activity
semantics as instantaneous Plan statements. By making them instantaneous, the
agent can perform an organizational action, such as enacting a role, updating
its mental state and possibly sending a message to other agents, and still carry
out an action as usual.

(Ext) and (Check) Same as in AORTA, with the mental state as defined above.

As a result we have defined AORTA semantics in terms of GAMA BDI opera-
tional semantics, which comprises a design for implementing AORTA in GAMA.

4 Evaluation

To demonstrate the usage of the operational semantics defined in the previous
section, we show an example of the organizational reasoning that the agents
perform. For the example we use an organizational meta-model based on the
one in [6] (see Table 1), which defines a simplified organizational meta-model for
patient treatment in a hospital emergency room. Due to space limitations, we
leave out details of the example.

In the example we assume two agents p and n who initially have the following
mental states:

– Σo (for both agents): as specified in Table 1, plus the following predicates:
“O rea(patient, p)” and “O rea(nurse, n)”. The condition in Σo states
that the nurse should perform triage before a patient is treated.

– Σa (for both agents): contains “patient(p)”.

– Γo, Γa (for both agents): empty.

We describe the updates that occur in the first loop of the GAMA activity
semantics with AORTA.

Perception We assume none of the agents perform any Perception statements.

Rule application Both obligation execution and option execution takes place in
this step. The Rule statements concerning obligation execution adds the pred-
icate “O obl(n, nurse, triage(p), treatment(p))” to Σo. The Rule state-
ments concerning option execution then adds “O obj(triage(p))” to Γo.

Intention selection Having “O obj(triage(p))” in Γo, and thus in I, it is se-
lected as the current intention for agent n.
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Table 1. Initially Σo for all agents contains these predicates.

role(patient , {treatment(Patient)})
role(nurse, {triage(Patient)})
obj(triage(Patient), {})
dep(patient ,nurse, triage(Patient))
cond(nurse, triage(Patient), treatment(Patient), patient(Patient))

Plan selection and execution Having a matching action reasoning rule for the
intention “O obj(triage(p))”, agent n then commits to triage(p) and sub-
sequently adds it to Γa. As the plans for the action reasoning rules and the
action transition function are instantaneous, agent n can then select a plan with
“triage” as trigger and begin execution of that plan.

The example shows how a nurse agent can use a clearly defined organizational
meta-model made from a top-down perspective to decide its course of action in
patient treatment. To get similar behavior using only the existing BDI framework
in GAMA, it would be necessary to design agents with a bottom-up method,
which would make the organization less clear. By adjusting the action reasoning
rules, we can also adjust how a nurse agent handles organizational obligations
separately from how it handles its own intentions.

5 Related Work

We compare this work with other models and frameworks for social simula-
tion. Network-oriented modeling has been applied for social system simulation
to study the effects of various social parameters for the agent behavior on the out-
come of the system [7–9]. Compared to the network model, AORTA is based on
the BDI paradigm and logic. MOISE+ is an organization meta-model which has
been implemented in the Jason agent programming platform [10,11]. In contrast
we use AORTA, which has also been implemented in Jason [12], and GAMA,
which is an agent-based simulation platform. There are also other methods to
include normative reasoning in agents which do not incorporate an organization
meta-model [13–15].

6 Conclusion

We have given an operational semantics for BDI agents in the GAMA platform
for agent-based simulation, and extended them with concepts and rules that add
organizational reasoning according to the AORTA framework. The extended se-
mantics comprises a design for implementing AORTA in the GAMA platform.
We have also shown the execution of the semantics with a small example. Fu-
ture work includes more details in the semantics and implementing them in the
GAMA platform with a larger example.
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