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Abstract

Jason is a well-known programming language for multiagent systems where
fine-grained concurrency primitives allow a highly-concurrent efficient execution.
However, typical concurrency errors such as race conditions are hard to avoid. In
this paper, we analyze a number of such potential pitfalls of the Jason concur-
rency model, and, describe both how such risks can be mitigated in Jason itself,
as well as discussing the alternatives implemented in eJason, an experimental
extension of Jason with support for distribution and fault tolerance. In some
cases, we propose changes in the standard Jason sematics.

1 Introduction

Jason [1] is a well-known programming language for multiagent systems (MASs)
with a well established formal semantics based on Agent Speak [6].

Programming multiagent systems is not an easy task, as it involves coordi-
nating the concurrent execution of a set of independent agents (akin to processes
in mainstream concurrent programming), each of which may also be composed
of a set of independently executing intentions (in mainstream programming of-
ten named threads). In Jason agents communicate through message passing,
afording a high-level of control, whereas intra-agent communication between in-
tentions is realised through asserting and retracting beliefs in the shared belief
base.

In previous work we have introduced eJason [3, 4], an extension to Jason
where new features have been added to cope with distribution and fault-tolerance
in MAS. As a first step to extend Jason with these features, we analyze in this
paper to what respect the concurrency model of Jason enables programmers to
develop concurrent multiagent systems without running into the usual pitfalls of
concurrency, i.e., difficult to handle race conditions. Clearly the fine-grained con-
currency primitives present in Jason, where the belief database is shared among
all concurrent interactions, promises highly-concurrent efficient execution, but
at the same time the programmer should be provided with convenient high-level
language constructs for controlling the amount inter-agent concurrency.

Intra-agent concurrency has been an issue of study for some time, in partic-
ular regarding how to resolve conflicts among goals when agents pursue multiple
goals. In [7] conflicts are handled in the goal level by representing conflicting



goals. A difficulty with this approach is that all plans for a conflicting goal are
considered conflicting, i.e., non-conflicting alternative plans that can achieve the
same goal are not considered. This issue is addressed in [8] which examines differ-
ent strategies for resolving conflicts, such as dropping intentions, or modifying
intentions with regards to the selection of plans for solving goals. Automatic
detection of conflicts is the approach followed by [9], where means for reason-
ing about the goal interactions are incorporated into the commercial BDI agent
development platform JACK, and evaluated empirically.

In this paper we take Jason as the programming platform of study and discuss
its semantics and implementation with regards to some concurrency problems
that may arise.

The rest of the paper is structured as four sections which each describe a
potential difficulty with a Jason concurrency mechanism, discuss how the diffi-
culties can be mitigated in Jason itself, and alternative solutions implemented in
eJason. In Sect. 2 we discuss mechanisms to control the amount of concurrency
among a set of interaction, whereas. Sect. 3 examines the possibility that the
context of a plan may be false when the plan body starts executing. Next, in
Sect. 4 and Sect. 5 we consider the mechanisms for handling failing achievement
and test goals respectively, and alternatives to such early failures, i.e., goal sus-
pension. Sect. 6 discussed how the changes implemented in eJason impacts the
reasoning cycle of agents, whereas Sect. 7 draws a number of conclusion from the
study of mechanisms to coordinate concurrent activities in Jason and eJason.

2 Mechanisms for synchronizing access to shared beliefs

The interpreter of Jason allows each agent to possess several foci of attention,
corresponding to the different intentions of the agent. These intentions compete
for the attention of the agent, and the decision on which intention to execute,
in each iteration of the reasoning cycle, is determined by the agent’s intention
selection function. The execution order of the different intentions is not always
irrelevant. The plans in the different intentions access and update the information
stored in the agent’s belief base. Therefore, the modification of the set of beliefs,
derived from the execution of an intention, may affect the outcome (or even
totally prevent the execution) of the rest of intentions available. The programmer
must then consider these data dependencies between the different intentions of
an agent’s mental state and, when necessary, control the synchronisation of the
execution of such intentions.

2.1 Nondeterministic execution implies nondeterministic belief
bases

To illustrate the difficulties that may be caused by sharing beliefs among a set
of interactions, consider the Jason agent in Fig. 1, which maintains a counter of
the number of files that it has uploaded.
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+!load(File) <-

load(File); // a

?files_loaded(Num); // b

-+files_loaded(Num+1). // c

Fig. 1. Jason plan for the file counter

Consider an agent with only this plan in its plan base and with initial goals
g1 = !load(file1) and g2 = !load(file2). The intentions corresponding to
these goals are composed by one instance of the plan above, i.e. I1=[p1] for g1
and I2 = [p2] for g2 with plan bodies {a1; b1; c1} and {a2; b2; c2}, respectively,
where a1 represents the formula a applied to g1, and so on.

Several executions of the agent code, using the standard intention selection
function, show that the counter is not always properly updated, as sometimes it
only records the upload of one file, while, in fact, two files have been uploaded.
A simple exploration of all possible execution traces, represented by the different
possible interleavings of the actions in the plan bodies, exposes the root causes
of the problem. These interleavings are depicted in Fig. 2. This figure shows a
graph where each node, labelled I1I2Ctr, represents a different configuration of
the agent’s mental state such that Ii∈{ai, bi, ci}∪X for i∈{1, 2} corresponds
to the action to be executed if the intention Ii gets selected by the intention
selection function (the symbol X is used as a placeholder if the corresponding
intention has been fully executed) and Ctr is the value of the counter (i.e. a belief
file_loaded(Ctr)). For instance, the node b1X1 corresponds to a mental state
such that the selection of the intention I1 implies the execution of the formula
b1, the intention I2 has been fully executed and the belief base contains a belief
files_loaded(1). Note then that the node XX2 corresponds to the outcome
desired (i.e. the counter is properly updated), while the node XX1, shadowed in
the graph, corresponds to an undesirable one (i.e. when the counter only records
the upload of a single file, instead of two). The different edges in the graph
represent the transition between mental states, and their label corresponds to
the formula executed during that transition. For instance, the outgoing edge
a1 (resp. a2) from the node a1a20 to the node b1a20 (resp. a1b20) represents
the transition triggered by the execution of the formula a1=load(file1) (resp.
a2=load(file2)). The analysis of the execution traces shows that the undesired
outcome occurs when the actions b1 and b2 (i.e. the actions where the value of the
counter is read) have been executed without the execution of neither c1 nor c2
(i.e. the actions that update the counter) in-between (i.e. all traces containing
the state c1c20). The reason is that, in these cases, one of the intentions is
handling outdated information regarding the counter and, therefore, the result
is incorrect.

2.2 Jason solutions

In a sense, the problem is a standard one in concurrent programming, i.e., how to
prohibit “bad” program executions where the concurrent execution of different
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Fig. 2. Possible interleavings for the counter update example.

threads (or intentions in Jason) incorrectly interfere with each other due to
concurrent access to a shared program state (in Jason, the belief base). The
Java programming language, for instance, has synchronized objects to prevent
concurrent access, and a number of more advanced mechanisms for controlling
concurrent access available in the java.util.concurrent library.

Atomic Plans The Java implementation of Jason enables the labelling of plans
as a way of including meta-level information that alters the agent’s reasoning
cycle. The label atomic is one of such labels. A plan labelled as atomic, also
referred to as atomic plan, is such that, once this plan is selected for execution
during an iteration of the reasoning cycle, all subsequent iterations will also
select this intention until the atomic plan is fully executed. More informally, the
atomic label represents a way of temporarily disabling the multiplicity of foci of
attention, keeping the attention of the agent in the intention until the atomic
plan is executed.

In order to avoid the data dependency explained in the previous section, an
atomic plan can be used. For instance, by replacing the plan in Fig. 1 for the
two (semantically dependent) plans provided in Figure 3.

This way, the formulas b and c are always executed consecutively, removing
the execution traces that led to the wrong result. This solution can be used
not only for belief updates, but also to implement behaviours that require the
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+!load(File) <-

load(File); //a

!update_counter.

@up[atomic]

+!update_counter <-

?files_loaded(Num); //b

-+files_loaded(Num+1). //c

Fig. 3. File counter with an atomic plan

agent to maintain its focus of attention on the same intention for several itera-
tions of the reasoning cycle (i.e. executing the formulas from the same intention
consecutively).

This solution requires the introduction of additional plans in order to deter-
mine the sets of actions that must be executed consecutively without a change
in the focus of attention, even for relatively simple plans. In our opinion, this is
not ideal from a programmer’s perspective. It obscures the code, as it increases
the number of plans in the agent’s plan base, consequently increasing the com-
plexity to maintain the agent’s program. Moreover, in our opinion, providing
several plans for the same goal shall be used to provide several alternatives for
its accomplishment, not to implement continuations of the same plan.

2.3 eJason solution: Critical Sections

The eJason language proposed the definition of critical sections to reduce the
amount of concurrency among interactions. Syntactically a critical section is
enclosed within braces, i.e., “{{” and “}}”. When an agent executes a formula
within a critical section, there can be no concurrent change in the focus of atten-
tion as long as the critical section is not left (as happens during the execution
of an atomic plan). Using critical sections as the synchronisation mechanism,
the program for the agent that updates a counter, can be modified as shown in
Fig. 4.

+!load(File) <-

load(File);

{{?files_loaded(Num);

-+files_loaded(Num+1)}}.

Fig. 4. File counter with eJason critical sections

This plan provides the same functionality as the combination of the two plans
in Fig. 3, i.e., Jason atomic plans and eJason critical sections are equivalent. In
the case of atomic plans, the parametrisation (via labelling) of the intention
selection function requires the programmer to consider the different intentions
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that may conflict, and establish a priority order for their execution. In contrast,
using critical sections, the programmer only identifies the regions of the agent’s
program that should be executed without interference from other intentions of
the agent.

Labelling Conflicting Plans Recently Jason has been extended with a new
interesting feature [10], where plans may be declared as conflicting with other
plans, with the intention that conflicting plans may not be concurrently executed,
whereas non-conflicting plans can be. In the example above, we can specify that
the up plan conflicts with itself, by using the conflict identifier self. Then,
the [atomic] declaration can be removed. Thus, in a sense, the possibility to
explicitly label plans as conflicting refines the notion of atomic plans.

The ASTRA approach Another approach to controlling concurrency in lan-
guages based on AgentSpeak is demonstrated by the ASTRA [2] language. There
critical sections are associated with an identifier (similar to the Java synchro-
nized blocks), such that for any identifier, at any time there is at most one
intention executing a critical section labelled by that identifier. Clearly, simi-
larly to the approach with labelling conflicting plans, this proposal also permits
an increased amount of concurrency (compared with using an universally shared
critical section) among a set of concurrent interactions.

2.4 What is the right solution?

Providing programming languages with effective tools for managing finely grained
concurrency is currently a very active research area, largely driven by the in-
creased commercial availability of multi-core processors. However, there is, in
our opinion, no clear consensus on what the right programming model and the
right concurrency primitives are, and it is not surprising that the same situation
holds for programming languages related to AgentSpeak.

Considering the eJason solution, for instance, it, in our opinion, represents a
step forward in that it defines formally, in the eJason semantics, the behaviour
of the new construct. On the other hand, to program highly concurrent agents
by sharing a single critical section is likely to prove too inefficient in practise.

Borrowing inspiration from Java again, apart from the critical sections, whether
labelled to permit more concurrency or not, we find the locks and conditions
provided by the java.util.concurrent.locks library, which permits the pro-
gramming of more flexible locking policies compared with basic critical sections.
One interesting adaptation of that library is represented by the work on shared
resources [5], where concurrent executions are guarded by concurrency precondi-
tions, such that the execution of a resource blocks until its concurrency precon-
dition (which are general predicates on the resource state) becomes true. As an
item of future work, it would be interesting to implement this approach in eJa-
son, essentially labelling critical section with general predicates over the agent
state restricting access. Of course, in such an approach, care has to be taken in
order to ensure efficient execution.
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3 Executing Selected Event Plans in Matching Contexts

Consider a simplified multi-agent system with a classical client-server architec-
ture. The client agents should write information into different files. In order to
avoid conflicts generated by simultaneous write attempts to the same file by dif-
ferent agents, the access to the file is managed by a server agent. A client agent
sends a message to the server agent to request the exclusive rights to access a
file before it can write into such file. When the exclusive access to the file is no
longer necessary, the client agent sends a message to the server agent to unlock
the resource.

An implementation in Jason of the a client is depicted in Fig. 5. Before a
client agent writes some text, Text, into a file, FName, it must first send an achieve
message to the server requesting the lock over the file (i.e. delegating a goal of
the shape !lock(FName) to the server). Then, it waits for the notification about
the acquisition of exclusive access to the file. This notification is represented by
a belief update event +granted(FName). After the reception of this notification,
the client agent writes the text into the file and requests the server to unlock
the file (again, delegating this task as an achievement goal).

+!write(FName, Text) : true <-
.send(server, achieve, lock(FName));
.wait("+granted(FName)");
write(Text, FName);
.send(server, achieve, unlock(FName)).

Fig. 5. Jason code for the client agents

The Jason code for the server agent is shown in Fig. 6. The plan, referred
to as PSrv1, handling the achievement goal to lock some file, FName, delegated
from some client, Client, requires such a file to exist and not to be blocked
by another agent. If these conditions hold, the first plan can be applied, which
amounts to adding a mental note, +blocked(Client, FName), recording that
Client has exclusive access to the file FName. Then, it notifies the client by
sending a tell message with the belief granted(FName). The plan handling the
achievement goal to unlock a file, referred to as PSrv2, checks whether the file
exists and whether it is locked by the same agent that attempts to unlock it.
The recipe provided by this plan implies erasing the aforementioned mental note
that records the exclusive access granted to the agent Client over the file FName

and, finally, notifying this client agent about the successful unlocking of the file.

Unfortunately, according to the semantics of Jason, a possible execution of
the above server, in the presence of another unrelated intentation (I), is the
following:

1. Two clients (c1 and c2) attempt to lock the same file, and send lock requests
to the server.
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+!lock(FName)[source(Client)] : //PSrv1
file(FName) & not blocked(_,FName)<-

+blocked(Client,FName);
.print("Agent ",Client," locks ",FName);
.send(Client, tell, granted(FName)).

+!unlock(FName)[source(Client)] : //PSrv2
file(FName) & blocked(Client,FName) <-

-blocked(Client,FName);
.print("Agent ",Client," unlocks ",FName);
.send(Client, tell, unlocked(FName)).

Fig. 6. Jason code for the file server agent

2. The server receives both lock requests, and selects the event corresponding
to the request from (c1), selects the plan corresponding to the case where
the server is not blocked, and instantiates an intention corresponding to that
plan.

3. However, instead of executing the intention corresponding to the new event,
the unrelated intention I is chosen instead.

4. Next, the event corresponding to the lock event by c2 is chosen, and the
corresponding new intention is executed, thus locking the resource.

5. Finally, the intention corresponding to the lock request by c1 is executed,
but in a state where the plan context is no longer valid, as the server is now
blocked (by beginning serving request c2).

The problem here stems from the fact that the evaluation of a plan context
and the execution of its plan body are decoupled. The Jason semantics allow
several iterations to take place between the one in which the plan context is
evaluated and deemed applicable; and the iteration in which the plan is chosen
for execution.

In our opinion this is a severe problem, making it quite hard to write reliable
event handling code.

3.1 Jason implementation solution: always select event intentions

In the current Jason implementation this problem is addressed in the default
intention selection function, by always placing the intention updated in the rea-
soning cycle first in the “intention queue”, and using a round-robin intention
scheduling strategy [1]. Note that a programmer can still replace this default
intention selection function with another one which, albeit faithful to the se-
mantics, suffers from the above problem.

3.2 eJason solution: consecutive evaluation and execution of a plan

The original solution implemented in eJason was to examine the agent plan
chosen to handle a particular event, and with a satisfied context. If this plan
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begins with a critical section, the corresponding intention is always executed
first. Otherwise the evaluation of the context and the execution of the intention
is, potentially, decoupled.

3.3 A better solution: modifying the Jason semantics

In retrospect the eJason implementation is not particularly satisfying. Having
to specify a critical section for potentially every agent plan can quickly produce
quite ugly code. On the other hand the current Jason implementation solution
is far from perfect too, as it, as far as we can understand always gives priority
to event handling over executing other intentions. Moreover, in our opinion, it
would be beneficial to modify the Jason semantics to remove the doubt whether
a Jason implementation may ever decouple the execution of the plan context
from beginning to execute the plan body. Permitting an interleaved execution
of these basic plan steps just makes the Jason programmer’s task unreasonably
hard, with little gain.

Thus we argue for a Jason semantics change which: (i) strongly couples the
execution of the plan context with the evaluating the first part of the plan body,
and (ii) does not give priority to handling events compared to executing inten-
tions. The resulting semantics will be published in a forthcoming publication.

4 Ensuring that Achievement Goals are not Dropped

In the example in Fig. 6, whenever a server agent gets the lock over a file, the
requests from different client agents to lock the same file are disregarded, i.e.,
simply dropped, by the server agent, since the context of the relevant plan PSrv1

cannot be satisfied.
This is another illustration of the difficulties posed by concurrent, or non-

deterministic execution. That is, if we cannot precisely control the order and
timing in which beliefs are asserted, or retracted, we may easily fail to predict
situations (system states) where a goal may incorrectly be dropped because its
context is not satisfiable. In other words, we risk creating fragile programs which
normally work well but, in rarely encountered scenarios, fail. For programming
such concurrent systems we believe it would be advantageous to have goal match-
ing mechanisms that are less sensitive to the way the belief base changes over
time.

As a second example, illustrating the difficulties in programming plans that
are robust to all different situations where they may be tried, consider the agent
below:

at(office). // Initial belief

!go(home). // Initial goals

!read(book).
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+!read(Item): at(home) <-

read(Item).

+!go(home): at(office) <-

drive(home).

This agent is initially at the office and possesses, simultaneously, the desires
of going home and reading a book. There are two possible outcomes for the
execution of this agent. In both of them, the agent goes home (as the plan to
accomplish such desire is always applicable in the initial state). However, the
agent does not always satisfy its desire of reading a book, since the plan for
doing so may be evaluated too soon (in the office), and thus dropped.

A programmer intending the agent to achieve both goals has to ensure that
the goals are selected in the desired order. This requires considering all the pos-
sible interleavings and implementing some suitable synchronisation mechanism.
The complexity of this synchronisation increases exponentially with respect to
the number of goals to synchronise.

4.1 Jason solution: explicitely requeue achievement goals

The simplest solution to avoid dropping all the achievement goals that cannot
be immediately handled due to the lack of applicable plans implies recording
them within the agent’s mental state in order to posteriorly pursue them. This
solution can be achieved, e.g., adding a new plan, PSrv3, whose context matches
whenever the file is already blocked by a different client agent. Following this
plan, the server agent records the requests that cannot be immediately served
by, e.g. returning the achievement goal addition event to the set of events:

+!lock(FName)[source(Client)] : //PSrv3

file(FName) & blocked(_,FName)<-

!lock(FName)[source(Client)]. // requeue

This solution, and similar ones, require the programmer to introduce a num-
ber of “fail-back” plans whose context is satisfied whenever the contexts of other
(preferred) plans are not. This can obscure the code, and moreover, is danger-
ously fragile as it is easy to overlock situations where plans may fail due to
nonsatisfied contexts.

Besides, note that by just enqueueing again the selected achievement goal
addition event, the mental state of the agent is reinstated after a complete iter-
ation of the reasoning cycle, hence consuming computational resources without
changing the aforementioned mental state. Moreover, given the non-determinism
of the selection functions, this event may be selected in consecutive iterations of
the reasoning cycle, possibly enqueueing it in all such iterations (this behaviour
is guaranteed if the belief base of the agent has not been updated, e.g. by other
intentions, in-between), degrading the performance of the agent.
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4.2 eJason solution: requeuing not applicable achievement goals

The alternative approach proposed in this article implies not generating a fail-
ure event for achievement goal addition events (i.e. events of the shape {+!g,ι}).
Instead, when one of these events is selected and there are no relevant or applica-
ble plans for it, the event is returned to the agent’s set of events (i.e. requeued).
This way, the programmer does not need to be concerned about the timing of
the selection of these events as they can be selected again later. For instance, the
agent in the simple example above would always go home and read a book (i.e.
avoiding possible race conditions), hence resulting in a single possible outcome
for the agent program.

Note that it could be the case that the intention of the programmer were to
provide a means for the agent to abandon its desire of reading a book when not at
home. In our opinion, such behaviour shall not be relied upon the randomness of
the intention selection function. Instead, the constructs already provided by the
language, like the internal action .drop intention, should be used. The following
example shows how this construct can be used in this case:

at(office). // Initial belief

!go(home). // Initial goals

!read(book).

+!read(Item): at(home) <-

read(Item).

+!read(Item): not at(home)<-

.drop_intention(read(Item)).

+!go(home): at(office) <-

drive(home).

Note that this alternative semantics is also available in the Jason imple-
mentation, by enabling a special configuration parameter, requeue, at startup.
However, our proposal is to declare this alternative semantics the standard Jason
semantics, as is the case in eJason.

5 Suspending Test Goals

Similar to the situation with achievement goals, whenever a programmer intro-
duces a test goal, ?g, into the body of a plan, p, the programmer must consider
the possibility that such a test goal may fail (along with the whole plan). This
failure occurs if the test, g, cannot be satisfied when the corresponding test
goal addition event, {+?g,ι}, is selected by the agent’s event selection function.
Many Jason programs, we believe, could be written more clearly if test goals
that cannot be satisfied are “suspended” until they become valid.
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5.1 eJason solution: providing a new suspensful test operator

In eJason we have introduced a new operator “??” for expressing that we want
a test goal to suspend until it is satisfiable. The semantics of a goal ??g is
similar to the semantics of a ?g test goal. The difference lies in the treatment
that the corresponding goal addition event, respectively {+??g,ι} and {+?g,ι},
receives from the eJason interpreter. When the test g cannot be satisfied using
the information in the agent’s belief base, for some test goal {+??g,ι}, this event
is returned to the agent’s set of events (note the similarity to the proposed
semantics for achievement goal addition events). Therefore, this event will be
selected again at a later iteration of the reasoning cycle.

To illustrate the behaviour of the operator let us code an agent that delegates
some tasks t1 and t2 to other agents alice and bob, respectively, and then gathers
the result of executing the tasks:

gather_results(Res1,Res2) :-

result(t1, Res1) & result(t2, Res2).

+!task3(Result) <-

.send(alice, achieve, t1);

.send(bob, achieve, t2);

??gather_results(Res1,Res2);

operation(Res1,Res2,Result).

Note that the new operator “??” is used to introduce a mechanism to suspend
the execution of an intention until some conditions are met. This mechanism
provides a functionality similar to that of the internal action .wait(Event).
However, while .wait relies on the occurrence of a single event or a logical
expression (e.g., querying the belief base), as condition for the reactivation of an
intention, the operator “??” establishes a goal g that must be matched in order
to reactivate the intention.

The new operator can help simplify code, as shown in Fig. 7, where the
behaviour of the client agent introduced in Fig 5 no longer requires the inclusion
of two separate, though semantically dependent, plans.

+!write(FName, Text) :true <-
.send(server, achieve, lock(FName));
??granted(FName);
write(Text, FName);
.send(server, achieve, unlock(FName)).

Fig. 7. Modified client agents, using the “??” operator
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6 The Reasoning Cycle of eJason agents

The introduction of the new language constructs and semantics described above
alters the agent’s interpreter, i.e., the number of state transitions in the Jason
reasoning cycle have increased. In Fig. 8 the new transitions are depicted as
dashed lines. The different steps that compose the reasoning cycle of a Jason
agent are the following:

– ProcMsg: during this initial step, the agent obtains information from its
environment (perception) and from the messages received from other agents.
This information may update the belief base and provide new goals, gener-
ating the corresponding events in each case.

– SelEv: one of the unprocessed events is chosen to be processed during the
current iteration. Such event is selected using an agent-specific event selec-
tion function.

– RelPl: the set of relevant plans for the event selected in the previous step
is computed. If there is no relevant plan either the event is discarded (in the
case of belief additions/deletions) or a failure event is generated (in the case
of goal additions).

– ApplPl: the set of applicable plans is computed from the set of relevant
plans. If the set of applicable plans is empty, either the selected event is
discarded or a failure event is generated (for the same cases as before).

– SelAppl: one, and only one, of the applicable plans is selected using the
agent-specific option selection function.

– AddIM: if the selected event possesses a related intention (i.e. it is a subgoal
added during the execution of an instruction in the body of another plan),
the selected applicable plan is put on top of such intention (recall that an
intention is a stack of plans). Otherwise, a new intention, only containing
the selected applicable plan, is added to the set of intentions.

– SelInt: if the set of intentions is empty, then a transition to the inital step
is taken. Otherwise, an agent-specific intention selection function selects one
intention from the set of intentions of the agent. Note that each intention
represents a different focus of attention of the agent.

– ExecInt: the first formula in the body of the plan on top of the intention
stack is executed, triggering some modification of the agent’s mental state
or its environment (e.g. adding a new belief or sending a message), along
with the generation of the corresponding event. If the formula executed is
not a goal addition of type !g or ?g, such formula is removed from the body
of the plan. Otherwise, the execution of the intention is suspended until the
subgoal introduced is fully executed (the suspended intention appears as a
related intention to the corresponding goal addition event). Note that only
one formula is executed in each iteration of the cycle.

– ClearInt: if the body of the plan on top of the intention is not empty (i.e.
the plan has not been fully executed) the intention is returned to the set of
intentions and a new iteration starts. Otherwise, such plan is removed from
the top of the intention stack. If there are more plans left in the intention, a
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transition to the inital step is taken. If the intention is empty, it is completely
removed and a new iteration starts.

The new transitions, depicted in Fig. 8 as dashed transitions, are the follow-
ing:

– When there are no relevant plans for either an achievement goal or a test
goal introduced using the operator “??”, the transition k is taken.

– During the execution of a critical section no new events are selected. After
executing an action within a critical section, the transition l is taken.

– During the execution of a critical section, the focus of attention does not
change. After the addition of the intended means for a goal within a critical
section, the transition m is taken.

– During the execution of critical sections, the presence of failures introduces
new transitions. The absence of relevant plans for an event causes transition
n. The emptiness of the set of applicable plans causes transition o.

ProcMsgSelEv

RelPl

ApplPl

SelAppl

SelInt

AddIM

ExecInt

ClrInt

k

n

o

m

l

Fig. 8. Possible state transitions within a reasoning cycle in eJason.

7 Conclusions

In this paper we have analysed a number of Jason mechanisms for controlling
intra-agent concurrency and communication, and have identified a number of
potential pitfalls these mechanisms can cause an inexpert Jason programmer.
Moreover, we have suggested alternatives to these mechanism, which, in our
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opinion, may make the task of controlling and coordinating the concurrent ac-
tivities of Jason (intra-agent) intentions easier.

For two of these mechanisms we advocate changing the standard Jason se-
matics. An alternative to doing so is to configure a standard Jason implementen-
tation by replacing e.g. the standard intention selection function with a custom
one. However, we argue that there are dangers in such customizations too, as a
(concurrent) Jason program cannot then be judged correct by itself, but must
be judged in conjunction with the particular configuration it is designed to be
run under.

In future work we aim to revise the Jason semantics to account for these new
mechanisms, without relying on external customization functions.
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10. Zatelli, M.R., Hübner, J.F., Ricci, A., Bordini, R.H.: Conflicting
goals in agent-oriented programming. In: Proceedings of the 6th In-
ternational Workshop on Programming Based on Actors, Agents,
and Decentralized Control. pp. 21–30. AGERE 2016, ACM, New
York, NY, USA (2016). https://doi.org/10.1145/3001886.3001889,
http://doi.acm.org/10.1145/3001886.3001889

16


