
Lesson Learnt from Designing Self-Adaptive
Systems with MUSA

Massimo Cossentino1, Luca Sabatucci1 and Valeria Seidita2,1

1 C.N.R., Istituto di Calcolo e Reti ad Alte Prestazioni, Palermo, Italy
2 Dip. dell’Innovazione Industriale e Digitale

Università degli Studi di Palermo, Italy
{luca.sabatucci, massimo.cossentino}@cnr.it, valeria.seidita@unipa.it

Abstract. Designing and developing complex self-adaptive systems re-
quire design processes having specific features fitting and representing
the complexity of these systems. Changing requirements, users’ needs
and dynamic environment have to be taken in consideration, also consid-
ering that because of the self-adaptive nature of the system, the solution
is not fixed at design time but it is a runtime outcome.
A new design process paradigm is needed to design such systems. In this
paper, we identify specific features of the design process for supporting
continuous change and self-adaptation. The work is based on a retrospec-
tive analysis conducted on the artifacts produced during three research
projects, developed in the last five years with the use of the MUSA mid-
dleware. Among the most relevant findings, this work highlights the im-
portance of a co-evolutive design process in which self-adaptive software
plays a proactive role as well as the human part. Keywords: Adaptive
Management, Continuous Change, Design Process.

1 Introduction

Today, several trends are forcing application architectures to evolve. Users expect
a rich, interactive and dynamic user experience on a wide variety of clients in-
cluding mobile devices. Customers expect frequent rollouts, even multiple times
a day, to keep pace with their informational and service requirements. Moreover,
customers want to significantly reduce technology costs and are unwilling to fund
technology changes that do not result in direct customer benefits.

In traditional software life-cycles, a single change can affect multiple com-
ponents, creating a complicated testing effort, requiring testers to understand
various code interdependencies or test the entire application for each change. IT
organizations demand for a paradigm shift: from monolithic applications (that
puts all user interfaces, business logics and data in a single process) toward ap-
plications that enable architectural extensibility.
The level of adaptability to changing requirements is managed at design time us-
ing ad-hoc life cycle or process models. Developing self adaptive systems using a
systematic approach requires to consider several factors that may be summarized
in: changing operational context and changing environment.



2

Even though different kinds of approaches for engineering self adaptive sys-
tems exist - they span from control theory to service oriented and from agent-
based approaches to nature inspired ones - today some possible good approaches
seem to be those exploiting models-at-run-time and reflection. Nevertheless, a
disciplined and systematic design process for developing self-adaptive systems,
able to consider changing operational context and changing environment, still
lacks.

In this paper, we propose a retrospective analysis based on the use of MUSA
(Middleware for User-Driven Service Adaptation) for developing self-adaptive
systems. This study has been conducted on three different projects developed
in the last years. The aim of this analysis is to explore the way in which design
time and run-time draw near and intersect and which are the elements of the
process involved in that. Finally, the results have been used for generalizing and
understanding if, and under which conditions, the approach used with MUSA
may be extended to other approaches to self-adaptation.

The rest of the paper is organized as follows: Section 2 illustrates some exist-
ing middleware for self-adaptive systems and introduce the need for systematic
design approaches; Section 3 discusses the retrospective analysis on MUSA; in
Section 4 the obtained results are discussed and in Section 5 we discuss them
in order to generalize the approach; finally in Section 6 some conclusions are
drawn.

2 Continuous Changes and Self-Adaptation

Complex distributed software requires continuous changes: it is a mix of con-
tinuous delivery and continuous integration. The three keywords are ‘frequent’,
‘reliable’ and ‘seamless’.

Automation is certainly one way to enable continuous changes. In particular
we are interested in exploring the automation that supports continuous changes.

One of the characteristics of self-adaptive systems is to be designed for simpli-
fying changing the behavior at run-time. In practice this category of autonomous
systems is able of changing at run-time in order to either maintain or enhance
their functions. This feature may be exploited for allowing continuous delivery
and continuous integration without going offline. Now we want to focus on self-
adaptation as the means to assure continuous changes to the running software.
It is a matter of fact that many of the proposed approaches achieve general
adaptation techniques by exploiting models-at-run-times and reflection.

This section is organized as follows: the first subsection focuses on different
middleware, highlighting how they support different kinds of reflection. Subse-
quently, we look at the literature for understating which methodological support
to be provided to developers. Finally, the need for a specific process raises a
research question that motivates this work.



3

2.1 Middlewares for Self-Adaptation

Literature provides an increasing number of middlewares for developing and
managing the self-adaptive characteristics of a system under development. These
approaches are highly heterogeneous, yet one can usually classify them as com-
ponent or service-based [5, 22], agent-based [23, 11], or bio-inspired [30, 15].

SeSaMe (SEmantic and Self-Adaptive MiddlewarE) [6] is a self-organizing dis-
tributed middleware that uses semantic technologies to harmonize the interaction
of heterogeneous components. In SeSaMe, components self-connect at run-time,
without any prior knowledge of the topology. The dynamic architecture grants
system’s reliability even when multiple components leave or fail unexpectedly,
and dynamically alters the system’s topology to cope with message congestion.

SAPERE (Self-aware Pervasive Service Ecosystems) [30] is inspired by nat-
ural ecosystems in order to model dynamism and decentralization in apervasive
networks. In SAPERE various agents coordinate through spatially-situated and
environment-mediated interactions, to serve their own individual needs as well
as the sustainability of the overall ecology. The environment is modeled as a
spatial substrate where agents’ interactions are managed as virtual chemical re-
actions. In this way, self-adaptation is not performed at an individual level, but
it is rather an emerging feature of the system.

Kramer and Magee [8, 18] propose MORPH, a reference architecture for self-
adaptation, inspired to robotics, that includes (i) a control layer, a reactive
component consisting of sensors, actuators and control loops, (ii) a sequencing
layer which reacts to changes from the lower levels by modifying plans to handle
the new situation and (iii) a deliberation layer that consists in time consuming
planning which attempts to produce a plan to achieve a goal. The main difference
with our architecture is that we introduce a layer for handling goal evolution.
The architecture is suitable for implementing self-adaptive system of type 2, able
to deal with anticipated changes by selecting among pre-computed adaptation
strategies.

MUSA (Middleware for User-driven Service Adaptation) [25] is a middleware
for orchestrating distributed services according to unanticipated and dynamic
user needs. Its main abstractions are theGoal and the Capability. They represent,
respectively, what the system is expected to do and what the system knows to
be able to do. Once goals and capabilities are specified, a Proactive Means-End
Reasoning [23] associates system capabilities with the user goals for deducing
possible Solution Models that can guarantee the desired final state (i.e. goal
addressing). Therefore, MUSA is able to organize and orchestrate its components
in order to actually reach the desired result.

The benefits of these middlewares are that they provide basic functionalities
for rapid prototyping of many self-adaptation features such as monitors and
actuators. The common factor of almost all these different infrastructures is
the idea of exploiting the mechanism of reflection in order to take run-time
strategic decisions. They support some run-time entities and models, i.e. high-
level abstractions of the software system. By maintaining these abstractions at



4

run-time, the software system could be able to perform reflection and it may
predict/control certain aspects of its own behavior for the future.

From a software engineering point of view using these middleware implies
a methodological approach that moves design artifacts from the design-time to
the run-time.

2.2 Need of a Process for Continuous Change

A promising approach to manage complexity in runtime environments and to
implement MAPE-K (the Monitor-Analyze-Plan-Execute architectural loop) [2]
activities is to develop adaptation mechanisms that involves software models.
This is referred to as models@run.time [7]. The idea is to extend the model
produced using MDE (model driven engineering) approaches [29] to runtime
environment. Blair et al. emphasize the importance that software models (arti-
facts) may play at runtime, they also use the mechanism of reflection inducing
that the necessary adaptation is performed at the model level rather than at
the system level. In so doing, researchers in this field stop at artifact levels; they
wish artifact produced were tied to the process used for creating them. However,
to the best of our knowledge, this is still a vision, an idea, and nothing has been
really realized for joining the design phases and the runtime.

Baresi et al. [4] introduce the need of bringing the design time near to the
runtime: “The clear separation between development-time and run-time is blur-
ring and may disappear in the future for relevant classes of applications”. This
allows some changing activities to be shifted from design and development to
runtime and some changing responsibilities to be assigned to the system itself
instead of to the analysts or designers. Thus realizing and really implementing
adaptation [1, 9].

As already said, requirements engineering has to deal with requirements that
change at runtime as the result, for instance, of changing in the environment.
Uncertainty and incompleteness are at the base of requirements engineering for
self-adaptive systems [17, 10]. Some researchers investigated the use of a goal
model for specifying behavior and requirements [19, 16] and for supporting the
modeling of adaptation mechanism instead of implementing adaptation at run-
time.

The life cycle of a self-adaptive system, or of one of its components, starts
with its design and does not terminate with its deployment and testing. The
life-cycle continues with some monitoring phases aiming at identifying and han-
dling new or emergent requirements and/or needs from users. This implies that
self-adaptation allows to make run-time changing and that the self-adaptive sys-
tem itself supports the new development phase aiding, or better substituting,
designers.



5

2.3 Research Question

This work focuses on the problem of developing a self-adaptive system by ex-
ploiting specific middleware from literature. The research question we raise in
this paper is:

RQ: which are the characteristics of a design process for supporting self-
adaptive middleware?

In other words we are interested in identifying the specific characteristics of
a software design process for supporting MUSA (or other similar framework)
in implementing a self-adaptive solution. It is worth underling this paper does
not focus on the specific activities of such a design process, such as requirement
analysis, ontology creation and architecture design. These activities would be
too dependent on the specific technology and paradigm adopted for the project.
Conversely, we are interested in studying the process from a different point of
view, looking at iterations, roles, artefact life-cycles and so forth.

In order to investigate these topics we exploit the experience gained with
MUSA, a self-adaptive middleware, and then we try to generalize some of the
obtained results.

3 A Retrospective Analysis of MUSA

We selected MUSA [25] because we gained a practical experience of use, due to
its adoption in several applications.

A MUSA application is not directly interfaced to the environment; instead,
ad hoc sensors and actuators are utilized for this purpose. The capability is the
abstraction that allows to specify not only the operations necessary for enacting
the agent’s decisions (actions on the environment, interactions), but also when
and how to use them for addressing a purpose. A capability represents an atomic
and self-contained action the system may intentionally use to address a (partial)
result.

In MUSA goals are run-time entities that represent the specification of its
requirements. They are run-time entities in order to allow the system to be
able to reason upon them. The framework exploits the GoalSPEC language [27]
in order to facilitate the description of requirements. It is based on structured
English and adopts a core grammar to which domain-specific terms can be added.
It is automatically converted into a set of agent’s belief statements (see [24]
for more details about this aspect). A solution model represents a contextual
composition of capabilities that may be used for addressing a set of goals.

It is worth noting that in MUSA there is not a direct connection between
goals and capabilities (indeed it is up to the system the responsibility to discover,
at run-time, possible solution models). The only limitation is that both goal and
capability specifications must be compliant with the same conceptualization of
the world. In other words, it is necessary to establish an ontology over which to
derive the semantic description of these elements. Despite the ontology is not



6

explicitly a run-time entity, its concepts and predicates are, because they con-
stitute the language that support the agents BDI model [21].

Empirical Study Design. In the last years MUSA has been adopted in vari-
ous research projects and case studies with very different application domains.
Table 1 gives an overview of the sources from where data have been collected.
The analysis mainly considered the design activities, related to ontology, capa-
bilities and goals. It focuses on artifacts that have been created and/or modified.
Iterations have been deduced by considering artifact versioning.

Table 1. Summary of research projects and case studies where the MUSA middleware
has been employed between 2013 and 2016.

Achronym Type App. Name Description
IDS Research

Project
Innovative Doc-
ument Sharing

The aim has been to realize a prototype of a new genera-
tion of a digital document solution that overcomes cur-
rent operating limits of the common market solutions.
MUSA has been adopted for managing and balancing hu-
man operations for enacting a digital document solution
in a SME.

OCCP Research
Project

Open Cloud
Computing
Platform

The aim was the study, design, construction and testing of
a prototype of cloud infrastructure for delivering services
on public and private cloud. MUSA has been employed,
in the demonstrator, in order to implement an adaptive
B2B back-end service for a fashion company.

Smart Travel Case
Study

Travel Agency
System

MUSA provides the planning engine that creates a travel-
pack as the composition of several heterogeneous travel
services. The planning activity is driven by traveler’s
goals.

As in the traditional requirement analysis, every MUSA project started with
a good understanding of the domain by means of an ontology. The first variable to
study in this analysis is the ontology. In MUSA, the ontology is necessary because
it represents the common language for defining all the entities-at-runtime that
will be developed in the subsequent phases. The ontology definition exploits a
POD diagram [13]. In particular the analysis focuses on two main aspects: the
POD artifact and the effort spent on it.

A second point that is worth to be discussed concerns the definition of the
services the system may employ in the emerging solution/architecture. In MUSA
capabilities are run-time artifacts that are central for enacting solutions to ad-
dress user’s goals. This is the second variable we decided to include in our study.
In particular the analysis focuses on two main aspects: the number of capability
artifacts and the effort spent on decomposing the problem is smaller (atomic)
services.

Finally, during the goal modeling phase, customer’s requirements are trans-
lated into significant states of the system to be addressed. In some circumstances,
in our projects, this activity implied a small revision of the ontology, and, conse-
quentially, of the capabilities. This is the third variable of the study and includes
the complexity of the goal model and the effort spent in revising goal specifica-
tions.



7

4 Interpretation of Results

Table 2 reports empirical data extracted from the three projects during their first
three iterations. Data is also summarized in three charts, as shown in Figure 1.

Table 2. Empirical data obtained by retrospective analysis of three research projects
in which MUSA has been adopted for developing a self-adaptive system.

Project IDS OCCP Smart Travel
First Prototype

type of change first iteration first iteration first iteration
ontology size (only leaf concepts) 6 10 12
capability size 4 5 3
goal size 4 8 5
effort for ontology 10.00 30.00 7.00
effort for capability 30.00 70.00 40.00
effort for goals 14.00 7.00 100.00
total duration (to injection) 54.00 107.00 147.00
average solution size 4 5 15
number of solutions 1 1 5

Second Prototype
type of change bugfix+evolution evolution bugfix+evolution
ontology size 9 10 12
capability size 6 8 5
goal size 6 8 7
effort for ontology 7.00 10.00 7.00
effort for capability 21.00 40.00 25.00
effort for goals 7.00 7.00 14.00
total duration (to injection) 35.00 57.00 46.00
average solution size 6 6 15
number of solutions 3 9 5

Third Prototype
type of change evolution bugfix+evolution bugfix+evolution
ontology size 10 10 14
capability size 7 12 8
goal size 7 9 7
effort for ontology 3.00 7.00 14.00
effort for capability 17.00 50.00 20.00
effort for goals 1.00 4.00 1.00
time to injection 21.00 61.00 35.00
average solution size 6 7 18
number of solutions 6 18 5

The use of MUSA for developing and executing self adaptive systems implies
to perform once a classical design phase. After that, the system is got on execu-
tion and every required change has to be handled while the system is running.
In our approach that means several new iterations of design and execution ac-
tivities. Some design activities are performed with the aid of agents that act “in
the loop” of the MAPE actions. Which initial activities are modified or affected
by the intervention of agents?

In order to answer these questions, it is necessary to provide some more
details about how MUSA works. MUSA is based on collaborating agents and
artifacts [20]. Figure 2 depicts the main stakeholders, agents and artifacts in-
volved in this process. The agent is the central element of the infrastructure.
According to the classic vision, an agent is the owner of some capabilities, i.e. it
can perceive the environment and act in order to change it. In addition MUSA



8

0	

2	

4	

6	

8	

10	

12	

first	prototype	 second	prototype	 third	prototype	

ontology	size	

capability	size	

goal	size	

0	

20	

40	

60	

80	

100	

120	

first	prototype	 second	
prototype	

third	prototype	

effort	for	ontology	

effort	for	capability	

effort	for	goals	

cycle	dura=on	

0	

2	

4	

6	

8	

10	

12	

first	prototype	 second	
prototype	

third	prototype	

average	solu=on	size	

space	of	solu=on	

Fig. 1. Charts reporting average data, along three iterations, as extracted for the three
projects. Top-left diagram shows the average increase of the complexity of the ontology,
the capability model and the goal model. Top-right diagram shows the corresponding
effort (in man hours) required to complete the iteration. Finally, bottom diagram high-
lights the growth of the space of solutions.

agents know which capabilities they have and how to use them (thanks to the
access to the Capability Repository artifact). The unique and shared design goal,
common to all the agents, is to address customers’ run-time goals3, when these
are injected into the system.

When the user specifies a new set of goals to be addressed (by updating the
Specification artifact), then the solution explorer agents are motivated to find
one or more solution models. Given the perceived state of the world, the injected
set of goals and the set of available capabilities, the problem (also referred as the
Proactive Means-End Reasoning) is to find a complete composition of capabilities
that may be used for addressing the goals.

Solution explorers collaborate, each exploiting its own knowledge, for explor-
ing a space of solutions (the Solution Graph artifact), where states represent
possible worlds they can reach by applying their capabilities in sequences. The
algorithm is described in [23, 26].

The definition of the domain is performed once and offline, whereas all new
goals and capabilities, their definition and implementation, hence the core of
the design phase, are produced/updated by the developer and the customer in
conjunction with the service manager and the solution explorer while the system
3 The customer is generally the owner of system requirements, however, in MUSA
sometime user and customer are the same person.



9

<<agent>>
solution
explorer

<<agent>>
architecture
manager

<<agent>>
service
manager

entity@runtime

DOMAIN
ONTOLOGY

GOALS SERVICE

REQUIREMENTS

ARCHITECTURECAPABILITY

analyst

customer

designer

user

developer

Fig. 2. The Human-Agent collaboration for the development of a MUSA application.

is already running.

This is not a mere automation of human activities, but instead a way for
enhancing the system and releasing new versions while the system is running.
Automation may be performed offline instead self-adaptation is performed on-
line.

MUSA agents’ social organizations are based on holons [14], an elegant and
scalable means to guarantee autonomy, self-organization, distributed coordina-
tion, knowledge sharing and robustness. Whereas agents (with their capabilities)
are the core bricks for producing basic functionalities, holons allow to dynam-
ically compose more basic functionalities in a complex one by self-organizing
several agents in multi-level architectures.

The arch manager agent is responsible for orchestrating the formation of
a suitable hierarchy for the solution model (Configuration Set artifact). The
hierarchical nature of holons allows to mix the top-down (goal to capability)
recruitment approach, and the bottom-up service composition, that are both
needed to realize complex functionalities. In either cases, some of the service
manager agents enter the holon and become responsible for producing a part
of the whole result. Coordination and knowledge sharing, within a holon, is
respectively realized through the Active Case and the Shared Context artifacts.

The retrospective analysis on the use of MUSA in three different projects
(whose development has taken about five years) has given some interesting re-
sults that are summarized in Figure 3. The boundary between the offline and
online design is highlighted by the first “modification point” - a modification
point is a moment in the system lifetime in which a new life cycle begins. The
time interval between two different modification points is used by the system for
embracing occurring changes in the operating condition and for releasing new
configurations of the system. Time before the first modification point, the left
part of the figure, represents when analyst, developer and customer designed the
first version of the system for solving a specific problem with the aid of some



10

modification
points

<<agent>>
solution
explorer

<<agent>>
architecture
manager

<<agent>>
service
manager

analyst

customer

developer

+

+

DOMAIN
ONTOLOGY

ARCHITECTURE

CAPABILITY

release cycle release cycle release cycle
t

GOALS

offline online

Fig. 3. Outcome of the retrospective analysis.

agents working in MUSA. Until this point the system is not still at work and the
analyst produces a detailed representation of the domain of interest by means
of a Problem Domain Ontology.

The developer designs a first set of capabilities the system has to own and
the customer designs a first set of goals the system has to pursue using the right
capabilities. These two activities are performed respectively, with the aid of the
service manager agent and the solution explorer agent. The time spent in this first
phase, obviously depends on the kind of problem to be faced, it is a classic design
phase. After the first modification point, hence after the system is running and
some changes are occurring, the system has to adapt, to be (re)designed online.

In other words, once the system is deployed and fired, agents collaborate
in order to achieve the goals. They exploit the available capabilities and plan a
solution (duty of the Solution Explorer agent). The solution is a set of capabilities
that opportunely orchestrated may achieve the goals. Orchestration is left to
the coordination occurring among agents. They are therefore involved in the
construction of a dynamically built holonic architecture under the supervision
of the Architecture Manager agent. While the system is running, the MUSA
middleware permits the injection of new goals or capabilities. Sometimes even
the domain ontology has to be evolved at runtime (in order to support the
definition of new goals and capabilities). Once new goal/capabilities are injected,
as already discussed before, the Solution Explorer agents look for the solution
to the new goals or for the improvement of the solution for an existing goal. If a
new solution is found (a new set of capabilities), the Architecture Manager agent
proceeds with the construction of the new holons by inviting agents managing
the selected capabilities in participating in the new piece of work.



11

From the analysis of the selected three projects we realized that after each
modification point, each release takes less time and effort to be delivered and
above all it implies less and less interactions among MUSA and the designers.
Hence, the interleaving between design time and runtime increases from one
release to another. Which is the explanation of this fact?

We may accept the following hypothesis: the tight interleaving is reached
because the system modifies its behavior by evolving itself. Evolution consists
in the fact that, every time a modification in the running/operating conditions
(a new goal, a new requirement, a change in the environment or a change in
the way the user uses the system) occurs, the system has to be endowed with
new capabilities or goals and if necessary the ontology domain has to be refined.
This second activity pertains the analyst and it is reasonable to think that, for
each release time slot, it requires less and less time. In fact, for a specific domain
context and a specific class of problem the knowledge about the domain is quite
complete after the first design phase, we think it is reasonable that only a few
changes and refinements have to be introduced. So, this activity requires, for
each release, less time and interactions between system and analyst.

Concerning capabilities and goals, each time new capabilities are added and
new goals are pursued, the system has acquired the ability to do more and diverse
things, to recover and orchestrate several more services to be used. We suppose
that, and this is confirmed by the analysis of projects data, after a certain number
of releases, the knowledge on the environment becomes reasonably “stable" and
each change is supported with less effort due to the fact that the system possesses
all the capabilities for pursuing each kind of new goals. The system self-adapts.
Fewer capabilities need to be added each time and new goals may be reached
with less effort. After four or five modification points, design time and runtime
activities converge in a system that is able to search for (and implement) the
right functionality for facing each kind of change.

It is important to note that the evolution and consequent levels of self-
adaptation is not the simple result of the use of MUSA but it mostly is the result
of a way of conceiving the interaction among the involved parts of the systems.
Analysts, developers, customers and the system itself operate in a synergistic
fashion. Thus, the eventual injection of new goals and/or definition of new ca-
pabilities is carried out in a way that assure the consistency of changes with the
initial designed systems. Handling the interactions using the middleware MUSA
allows to vary the design process at runtime for managing continuous changes.

Summarizing, the study provides empirical evidences that:

1. A design process for MUSA includes a tight collaboration between human
actors and agents of the system. In the specific case of MUSA human roles
are: customer, analyst, designer and developer. Agents roles are: solution
explorer, architect and service manager.

2. A set of run-time entities (goals and capabilities) represent the continuous
data flow between engineers and agents (solution explorer and service man-
ager) of the system.



12

3. Each run-time model is characterized by a different state, with different
iterations with respect to the design process.

4. Frequent release cycles are performed in order to make the solution converge,
and/or in order to broad the space of adaptation.

Concerning the RQ we set in Section 2, points 1-4 represent the basic char-
acteristics that are necessary in a design process for supporting the development
with MUSA. The next section discusses whether the results of the retrospective
analysis may apply to other middlewares and self-adaptation approaches than
MUSA.

5 Discussion

A generalization is a broad statement that applies to many examples. In order
to generalize what has been said for MUSA, we have to take in consideration
also other middleware and approaches for self-adaptation.

Generalization. With the aim of providing a rationale for generalizing claims
in Section 4, we have found pro e cons arguments. Both of them will be presented
in the following, thus providing the reader with a complete landscape.

Points against the generalizations. MUSA works with a set of entities at run-
time: goals, capabilities and the architecture of the solution. Changing the nature
of run-time entities causes that the design process could change completely. For
instance, in SeSaMe, the run-time entity is the group and the network topol-
ogy: goals are embedded within nodes’ roles. Another example is provided by
SAPERE, in which each agent exists for a specific user’s purpose, however the
run-time entity is the eco-law, i.e. the rule specification that holds interaction
among agents of the system. Taking these two middlewares as an example, the
number and types of actors that collaborate in producing the system, as shown
in Figure 2, could be no more valid.

Moreover, in MUSA a run-time model is related to a separate life-cycle be-
cause there is a neat separation of aspects among them. The use of a common
ontology breaks the direct dependency among goals, capabilities and architec-
ture. This could be different, in other middleware, in which a run-time model
may depend on another one (run-time dependencies). In this case, designing or
changing a model implies to design or revise the others. Life-cycles of Figure 3
could have one or more intermediate “integration points” where dependencies
are solved.

Points in favour to the generalization. A run-time model is inspired to the
mechanism of reflection: i) inspect the code, ii) generate new code, or iii) change
the existing code [28]. A run-time model represents a (semi) formal model
expressed at a high-level of abstraction. Engineers design these models off-line
and leverage them at run-time to drive system evolution [3]. The system uses



13

them to organize its behavior. Hence, a run-time model documents itself. This
consideration is quite general and can be easily extended to a large set of self-
adaptive system that uses reflection [30, 6, 8, 12].

In practice, besides the kind of human actors and system agents, Figure 2
highlights the double nature of the run-time models: documentation artifacts
and executable objects. This aspect of Figure 2 is quite general. Moreover, the
central key of Figure 2 is the collaboration between human and agent (intended
as an autonomous component of the system able to take decisions). The general-
ization of this architecture is that the enabler of this collaboration is the presence
of run-time models. In other words, in self-adaptive systems, humans and the
(components of the) system are both stakeholders of the resulting outcome.

Finally, analyzing the resulting software life-cycle, it is possible to claim that
whatever middleware is used, after the first injection of run-time models, the
system runs and produces a behavior. This means subsequent deploys are ac-
tually run-time modifications of the behavior. This because a run-time model
generally exists until the system itself exists.

As already said, each run-time model represents a documentation artifact.
A model artifact implies there is some kind of underlying design process that
engineers used for producing and maintaining it. Even if it is not possible to
take in consideration times and durations (because these are specific to MUSA),
we can observe that each design thread in Figure 3 is a spiral life-cycle used
for continuous prototyping the final result. In other words, Figure 3 represents
a projection of a three dimensions diagram where many parallel spiral models
develop along time, and meet each other in ‘modification points’ when run-time
models change and the system evolve.

Concluding, the generalizable elements of a design process for self-adaptive
middleware are:

1. the self-adaptive software becomes a stakeholder of itself;
2. run-time models represent documenting artifacts and executable objects;
3. the process is composed of threads, each following its own life-cycle;
4. each thread represents bidirectional collaboration between human stakehold-

ers and the self-adaptive software;
5. the process has to consider some points in which engineers and/or the self-

adaptive system apply evolutions.

Limits of this Analysis. The limited number of projects selected for this
analysis (three) could affect the conclusion we have drawn, however we have
selected application domains very different each others in order to increase the
significance.

The data extracted is bias toward the aspect that who worked on the projects
also worked in terminating MUSA, and in some cases fixing some bugs of the
middleware. Indeed, in the retrospective analysis, the most complex job was dis-
tinguishing the effort required for fixing the middleware from the effort required
to implement the run-time entities (ontology, goals and capabilities).

Moreover, we have restricted the retrospective analysis to the first three
iterations. However, some projects were developed in more iterations that were



14

not considered in this analysis. This choice was done in order to make them
comparable. In any case, Figure 1 shows that the trend of the curves is quite
regular. So we can assert the sample is quite respectful of the reality.

6 Conclusions

Due to the features of self-adaptive systems and the fact that, nowadays, sys-
tems are more interconnected and various than before, designers have not the
right means to anticipate and design interactions among different components,
interaction among users and the system. Indeed, (self-adaptive) software system
properties are effectively known when all the relationships among the software
components and between the software and the environment have been expressed
and have been made explicit. Such issues have to be dealt with at runtime; mod-
eling and monitoring users and the environment is the key for enabling software
to be adaptive [17, 10].

When requirements vary at run-time, it is important that requirements lend
themselves to be dynamically observed, i.e., during the execution. Middleware
for self-adaptation constitute good tools for easing complex systems development
and for providing a form of model@runtime but, methodological supporting of
run-time continuos change still lacks.

In this paper, we have illustrated the results of a retrospective analysis con-
ducted on our middleware (MUSA) with the research question of identifying the
main characteristics of a design process for developing self-adaptive systems.

The analysis highlighted that supporting self-adaptive solutions implies a
design process in which humans and agents closely collaborate. Differently from
a traditional design process, in this case some design choices are suggested by
the under-development software. In MUSA, for instance, goal, ontology model
and capabilities are run-time entities that constitute the subject of a continuous
data exchange between human and software agents.

Inspired by biology, in which co-evolution is the evolution of two or more
species which reciprocally affect each other, in MUSA humans and agents are
similarly connected by mutual relationships, in which choices on the one side
strongly affects the choices on the other side.

The paper terminates with a discussion about whether or not our approach
may be generalized to other frameworks than MUSA. Actually, there is not yet
a final answer to this question because we have identified both points in favour
and against. Surely future works are necessary to better investigate if findings
generalize beyond MUSA.

References

1. J. Andersson, L. Baresi, N. Bencomo, R. de Lemos, A. Gorla, P. Inverardi, and
T. Vogel. Software engineering processes for self-adaptive systems. In Software
Engineering for Self-Adaptive Systems II, pages 51–75. Springer, 2013.



15

2. P. Arcaini, E. Riccobene, and P. Scandurra. Modeling and analyzing mape-k feed-
back loops for self-adaptation. In Proceedings of the 10th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, pages 13–23.
IEEE Press, 2015.

3. U. Aßmann, S. Götz, J.-M. Jézéquel, B. Morin, and M. Trapp. A reference archi-
tecture and roadmap for models@ run. time systems. In Models@ run. time, pages
1–18. Springer, 2014.

4. L. Baresi and C. Ghezzi. The disappearing boundary between development-time
and run-time. In Proceedings of the FSE/SDP workshop on Future of software
engineering research, pages 17–22. ACM, 2010.

5. L. Baresi and S. Guinea. A3: self-adaptation capabilities through groups and
coordination. In Proceedings of the 4th India Software Engineering Conference,
pages 11–20. ACM, 2011.

6. L. Baresi, S. Guinea, and A. Shahzada. Sesame: towards a semantic self adaptive
middleware for smart spaces. In International Workshop on Engineering Multi-
Agent Systems, pages 1–18. Springer, 2013.

7. G. Blair, N. Bencomo, and R. B. France. Models@ run.time. Computer, 42(10):22–
27, Oct 2009.

8. V. Braberman, N. D’Ippolito, J. Kramer, D. Sykes, and S. Uchitel. Morph: A ref-
erence architecture for configuration and behaviour self-adaptation. In Proceedings
of the 1st International Workshop on Control Theory for Software Engineering,
pages 9–16. ACM, 2015.

9. J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel. Towards a taxonomy
of software change. Journal of Software Maintenance and Evolution: Research and
Practice, 17(5):309–332, 2005.

10. B. H. Cheng, R. De Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson,
B. Becker, N. Bencomo, Y. Brun, B. Cukic, et al. Software engineering for self-
adaptive systems: A research roadmap. In Software engineering for self-adaptive
systems, pages 1–26. Springer, 2009.

11. S.-W. Cheng. Rainbow: cost-effective software architecture-based self-adaptation.
ProQuest, 2008.

12. S.-W. Cheng, D. Garlan, and B. Schmerl. Evaluating the effectiveness of the
rainbow self-adaptive system. In 2009 ICSE Workshop on Software Engineering
for Adaptive and Self-Managing Systems, pages 132–141. IEEE, 2009.

13. M. Cossentino. From requirements to code with the passi methodology. Agent-
oriented methodologies, 3690:79–106, 2005.

14. M. Cossentino, N. Gaud, V. Hilaire, S. Galland, and A. Koukam. Aspecs: an agent-
oriented software process for engineering complex systems. Autonomous Agents
and Multi-Agent Systems, 20(2):260–304, 2010.

15. J. L. Fernandez-Marquez, G. D. M. Serugendo, and S. Montagna. Bio-core: Bio-
inspired self-organising mechanisms core. In Bio-Inspired Models of Networks,
Information, and Computing Systems, pages 59–72. Springer, 2011.

16. H. J. Goldsby, P. Sawyer, N. Bencomo, B. H. Cheng, and D. Hughes. Goal-based
modeling of dynamically adaptive system requirements. In Engineering of Com-
puter Based Systems, 2008. ECBS 2008. 15th Annual IEEE International Confer-
ence and Workshop on the, pages 36–45. IEEE, 2008.

17. P. Inverardi. Software of the future is the future of software? In International
Symposium on Trustworthy Global Computing, pages 69–85. Springer, 2006.

18. J. Kramer and J. Magee. Self-managed systems: an architectural challenge. In
Future of Software Engineering, 2007. FOSE’07, pages 259–268. IEEE, 2007.



16

19. S. Liaskos, A. Lapouchnian, Y. Wang, Y. Yu, and S. Easterbrook. Configuring
common personal software: a requirements-driven approach. In 13th IEEE In-
ternational Conference on Requirements Engineering (RE’05), pages 9–18. IEEE,
2005.

20. A. Omicini, A. Ricci, and M. Viroli. Artifacts in the a&a meta-model for multi-
agent systems. Autonomous agents and multi-agent systems, 17(3):432–456, 2008.

21. A. S. Rao, M. P. Georgeff, et al. Bdi agents: From theory to practice. In ICMAS,
volume 95, pages 312–319, 1995.

22. R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S. Hallsteinsen, J. Lorenzo, A. Mamelli,
and U. Scholz. Music: Middleware support for self-adaptation in ubiquitous and
service-oriented environments. In Software engineering for self-adaptive systems,
pages 164–182. Springer, 2009.

23. L. Sabatucci and M. Cossentino. From Means-End Analysis to Proactive Means-
End Reasoning. In Proceedings of 10th International Symposium on Software En-
gineering for Adaptive and Self-Managing Systems, May 18-19 2015.

24. L. Sabatucci, C. Lodato, S. Lopes, and M. Cossentino. Towards self-adaptation
and evolution in business process. In AIBP@ AI* IA, pages 1–10. Citeseer, 2013.

25. L. Sabatucci, C. Lodato, S. Lopes, and M. Cossentino. Highly customizable service
composition and orchestration. In European Conference on Service-Oriented and
Cloud Computing, pages 156–170. Springer, 2015.

26. L. Sabatucci, S. Lopes, and M. Cossentino. A goal-oriented approach for self-
configuring mashup of cloud applications. In Cloud and Autonomic Computing
(ICCAC), 2015 International Conference on, 2016.

27. L. Sabatucci, P. Ribino, C. Lodato, S. Lopes, and M. Cossentino. Goalspec: A
goal specification language supporting adaptivity and evolution. In International
Workshop on Engineering Multi-Agent Systems, pages 235–254. Springer, 2013.

28. P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkelstein. Requirements-
aware systems: A research agenda for re for self-adaptive systems. In 2010 18th
IEEE International Requirements Engineering Conference, pages 95–103. IEEE,
2010.

29. D. C. Schmidt. Model-driven engineering. COMPUTER-IEEE COMPUTER
SOCIETY-, 39(2):25, 2006.

30. F. Zambonelli, G. Castelli, M. Mamei, and A. Rosi. Programming self-organizing
pervasive applications with sapere. In Intelligent Distributed Computing VII, pages
93–102. Springer, 2014.


