
Computing the Initial Requirements in
Conditioned Behavior Trees

Eleonora Giunchiglia

DIBRIS, Università degli Studi di Genova, Italy
eleonora.giunchiglia@icloud.com

Abstract. Engineered multi agent systems are complex enough to re-
quire methods able to represent their global policies in a detailed yet
intuitive way. Behavior Trees are widely adopted to represent agent poli-
cies in gaming industry where modularity and ease of specification are
among the main requirements. However, their usage is mostly informal
and restricted to single agent policies. In this paper we propose an exten-
sion of Behavior Trees, called Conditioned Behavior Trees, to deal with
formal pre- and post- conditions related to action execution in a multi
agent context. For such trees, we further describe an encoding which
enables the computation of initial requirements, i.e., the set of condi-
tions under which at least one of the sequences of actions encoded by
the policy is bound to be executable.

1 Introduction

Engineered multi agent systems (MAS) are complex enough to require methods
able to represent their global policies in a detailed yet intuitive way. To this
purpose, many visual tools (e.g., [4]) have been developed in the past years, nev-
ertheless we believe that Behavior Trees, given their intuitiveness and compact-
ness, could represent a viable alternative to such tools. Behavior Trees (BTs) [2]
are very popular in the computer gaming industry (see e.g., [1, 3]) thanks to
their exploitation of modularity of tasks and their intuitive aspect. Nevertheless,
BTs have been mostly used to represent policies for single agents and, moreover,
a formal definition has never been presented in their literature.

In this paper, we propose an extension of BTs, called Conditioned Behavior
Trees (CBTs), which are able not only to represent global policies for MAS but
also to deal with actions which are subject to pre- and post-conditions. Further,
we show how, given a CBT, it is possible to compute in polynomial time a
propositional formula whose models correspond to the initial requirements of
the CBT, i.e., the set of conditions under which at least one of the sequences of
actions encoded by the policy is bound to be executable.

The paper is structured as follows: in Section 2 we revise the main concepts
about BTs, in Section 3 we describe CBTs and then, in Section 4 we show how
to perform the automatic computation of the initial requirements providing an
example of such computation in Section 5. Finally, we conclude the paper with
the conclusions and future work in Section 6.

1



(a) (b)

(c) (d) (e)

Fig. 1. Graphical representation of each type of node. Fig. 1(a) action node, Fig. 1(b)
condition node, Fig. 1(c) sequence node and children, Fig. 1(d) fallback node and
children, Fig. 1(e) parallel node and children.

2 Behavior Trees

Following [2], informally a BT is a directed rooted tree in which the nodes are
classified as root, control flow nodes or execution nodes; control flow nodes are
always internal nodes, and the execution nodes are always leaves. The execution
of every BT starts from the root, which sends ticks with a given frequency to
its children which can return Running, if its execution is not yet completed,
Success, if it has achieved its goal, and Failure otherwise. There are two types
of execution nodes (action and condition) and four types of control flow nodes
(sequence, fallback, parallel and decorator):

1. Action node: when it receives a tick from its parent it returns Success if the
action is successfully completed, Failure if the action cannot be completed
and Running otherwise.

2. Condition node: when it receives a tick from its parent, it returns Success if
the condition is satisfied and Failure otherwise. It cannot return Running.

3. Sequence node(→): when it receives a tick from its parent it sends it to
its children in succession, returning Failure (Running) as soon as one of
them returns Failure (Running), and Success only when all the children
have already returned Success.

4. Fallback node(?): when it receives a tick from its parent it sends it to its
children in succession, returning Success (Running) as one of them returns
Success (Running), and Failure only if all the children return Failure.

5. Parallel node(⇒): when it receives a tick from its parent it sends it to its
N children in parallel and returns Success if a given number M of children
returns Success, Failure if N −M +1 return Failure and Running otherwise.
In this paper we suppose that a parallel returns Success if all N children
return Success, and that all its children are action nodes.

6. Decorator node: special node with a single child which changes the child’s
outcome according to a policy defined by the user. Since it is user defined,
we will not focus on it in this paper.

2



A representation of each type of node is given in Figure 1. If we define a plan as
a sequence of sets of actions, then we understand that the policy defined by the
BT is the set of plans that are compliant with the BT itself, and which can be
easily derived from the rules we have given above.

3 Conditioned Behavior Trees

Intuitively, a CBT extends classical BTs because for each action it specifies: the
agent that performs the action, the action performed by the agent, the set of
preconditions which must be satisfied in order to perform the action, and the
set of postconditions that are necessarily satisfied if the action is successful.

More formally, we define a CBT over three sets:

1. the finite set of ids AG representing the agents belonging to the MAS,

2. the finite set of ids A representing the actions that each agent may perform,

3. the finite set of literals C used to describe the state of an agent or the state of
the environment in which the agents operate. We call C+ the set of positive
literals in C and C− the set of negative literals in C.

Hence, given the sets A, C AG and the function perform : AG → P(A) such that
given an agent α ∈ AG it returns the set of actions α can perform, the designer
can define a function cond that associates to each couple (α, a) with α ∈ AG
and a ∈ perform(α) a couple (Pre, Post) in which:

1. Pre ⊂ C represents the set of preconditions, and

2. Post ⊂ C represents the set of postconditions.

In the following we will always deal with agent-action couples (α, a) with a ∈
perform(α). When modeling the CBT we make the following additional assump-
tions:

1. each action is instantaneous,

2. given a couple agent-action (α, a) it cannot be the case that cond(α, a) =
(Pre, Post) such that there exist c ∈ Post and ¬c ∈ Post,

3. if two couples (α, a) and (β, b) are children of the same parallel node, then
it cannot be the case that cond(α, a) = (Preα:a, Postα:a) and cond(β, b) =
(Preβ:b, Postβ:b) such that there exist c ∈ Postα:a and ¬c ∈ Postβ:b.

As can be seen in Figure 2, given an agent α and an action a performed by α, we
can represent them in our CBT as an action node with on top the label “α : a”
and below the sets Pre and Post such that cond(α, a) = (Pre, Post). Further,
in CBTs, we model any condition node having condition c ∈ C by associating to
it a dummy action a, Pre = {c} and Post = ∅.

3



4 Computing the initial requirements

4.1 Building the state graph

Given the sets AG, A and C, we can build a state graph 〈S, T 〉 which represents
all the possible plans carried out by the agents in AG and in which:

– S represents the set all of possible states and it is computed as S = P(C+).
– T represents the transition function T : S × P(AG × A) → S such that

for each state s ∈ S and set of actions performed by a set of agents A ∈
P(AG × A) it returns a new state s′. Given s and A we will be able to
perform the set of actions A if for every pre-condition c of every action a
performed by the agent α such that α : a ∈ A we have that:
• if c ∈ C+ then c ∈ s, and
• if c ∈ C− then c 6∈ s.

Given s and A the new state s′ will be equal to:

s′ = s ∪ {c | c ∈ C+, c ∈ Post(α : a), α : a ∈ A}
\{c | c ∈ C−, c ∈ Post(α : a), α : a ∈ A}.

Given the above definitions, we can notice that a CBT always defines finite plans,
and, hence, it is possible to build a representation of all these plans on the state
graph as a propositional logic formula. As we show below, those representations
can be obtained in polynomial time with respect to the number of nodes in the
CBT, and give us the ability of computing the initial requirements necessary to
successfully complete at least one of the plans associated to the CBT.

4.2 State Graph Plans Representation

Suppose that the longest sequence of set of actions has length equal to N . Given
the above, and given the sets A, C, and AG we can then represent all the possible
plans of length up to N defined by the state graph as a conjunction of the below
formulas:

– for every α : a ∈ P(AG × A) then (α : a)i →
∧
{ci | c ∈ Pre(α : a)},

(α : a)i →
∧
{ci+1 | c ∈ Post(α : a)},

– for every condition c ∈ C then (¬ci ∧ ci+1)→
∨
{(α : a)i | c ∈ Post(α : a)}

for i = 0, . . . , N − 1.

4.3 Behavior Tree Plans Representation

In order to compute the representation of the CBT plans we have to:

1. assign to each node its sequence length equal to: (1) 1 if the node is a parallel
or execution node, (2) the maximum sequence length of its children if it is
a fallback node, (3) the sum of the sequence lengths of its children if it is a
sequence node. Then,

2. compute the CBT plans representation by calling the function getPlans in
Algorithm 1, with first argument set to the CBT root and the second set to
0. The function writes for each node n the encoding of the plans associated
to n and returns the time at which the next action has to start.

4



Algorithm 1 Get Propositional Formula from CBT
function performActions(B, t)

write (
∧
{α : at | (α : a) ∈ B}

∧
{¬(β : bt) | (β : b) ∈ (AG ×A) \ B})

function getPlans(node, current time)
no ops time = node.parent.seq length - node.seq length
if node.parent is fallback then

for (i=0; i < no ops time; i++) do
performActions(∅, current time+i)

current time += no ops time

if node is execution node then
write performActions({node.agent : node.action}, current time)
return current time + 1

if node is sequence or root then
write (
for c in node.children do

current time = getPlans(c, current time)
write ∧

write > )
return current time

if node is fallback then
write (
for c in node.children do

getPlans(c, current time)
write ∨

write ⊥ )
return current time + node.seq length

if node is parallel then
C = { c.agent : c. action | c ∈ node.children}
performActions(C, current time)
return current time +1

5 Example

To make more intuitive the explained method we build the representations as-
sociated to the CBT in Figure 2. In the example, first we compute the length
of the longest sequence of actions associated to each node obtaining that nodes
1 and 2 have sequence length equal to 2 while nodes 3, 4 and 5 have sequence
length equal to 1. Since the longest sequence has length N = 2, we have that for
i = 0, 1 the below formulas are produced: the state graph plans representation
are:

α : PassObjecti → ¬ObjectNearβi (1)

α : PassObjecti → ObjectNearβi+1 (2)

β : UseObjecti → ObjectNearβi ∧ObjectFunctioningi (3)

β : UseObjecti → > (4)

(ObjectNearβi ∧ ¬ObjectNearβi+1)→ ⊥ (5)

(¬ObjectNearβi ∧ObjectNearβi+1)→ α : PassObjecti (6)

(ObjectFunctioningi ∧ ¬ObjectFunctioningi+1)→ ⊥ (7)

(¬ObjectFunctioningi ∧ObjectFunctioningi+1)→ ⊥ (8)

5



Fig. 2. Example of CBT.

while the CBT plans representation are:

((α:PassObject0 ∧ ¬α:UseObject0 ∧ ¬β:PassObject0 ∧ ¬β:UseObject0)∧
(β:UseObject1 ∧ ¬α:PassObject1 ∧ ¬α:UseObject1 ∧ ¬β:UseObject1))∨

((¬α:PassObject0 ∧ ¬α:UseObject0 ∧ ¬β:PassObject0 ∧ ¬β:UseObject0)∧
(α:UseObject1 ∧ ¬α:PassObject1 ∧ ¬β:PassObject1 ∧ ¬β:UseObject1))

If we check the satisfiability of the conjunction of the above formulas we get that
the initial requirements are:

{ObjectFunctioning0}

which correspond to the model of the equation above put in conjunction with
(1)-(8).

6 Conclusions and Future Work

In this paper we have introduced a new type of BT, the Conditioned Behav-
ior Tree, which can easily represent MAS and comes with a formal definition.
Further, we have shown that, given a generic CBT, we can compute the ini-
tial requirements. In the future we would like to extend this work with more
expressive logics in order to introduce time dependent pre and post conditions.

References

1. Champandard, A.J.: Understanding behavior trees. AiGameDev.com 6 (2007)
2. Colledanchise, M., Ögren, P.: Behavior trees in robotics and AI: an introduction.

CoRR abs/1709.00084 (2017), http://arxiv.org/abs/1709.00084
3. Isla, D.: Halo 3-building a better battle. In: Game Developers Conference (2008)
4. Thangarajah, J., Padgham, L., Winikoff, M.: Prometheus design tool. In: 4th

International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2005), July 25-29, 2005, Utrecht, The Netherlands. pp. 127–128 (2005),
http://doi.acm.org/10.1145/1082473.1082817

6


