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Faculty of Informatics, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
http://people.inf.elte.hu/lzvarga

Abstract. In order to ensure global behaviour of decentralized multi-
agent systems, we have to have a clear understanding of the issue of
equilibrium over time. The evolutionary dynamics within a game is in-
vestigated in online routing games. The progress beyond the state-of-the-
art is that we introduce the notion of intertemporal equilibrium in the
study of the global behaviour of decentralized multi-agent systems, we
define quantitative values to measure the intertemporal equilibrium, we
use these quantitative values to evaluate a realistic scenario, and we give
an insight into the influence of the designed intertemporal expectations
of the agents on the global behaviour of decentralized multi-agent sys-
tems. An interesting result is that if the multi-agent system is designed
in a way that agents have less precise knowledge of the future, then it
leads to better global behaviour of the multi-agent system.

Keywords: Control of the Global Behaviour of Decentralized MAS ·
Ensuring Design Goals · Agent Theories and Models.

1 Introduction

In order to be able to define and measure design criteria, designers need for-
mal models. Currently the best model of multi-agent decision making is based
on game theory. The designers prefer multi-agent systems with an equilibrium,
because the equilibrium seems to be a stable state of the system. If the equilib-
rium meets the design criteria, then we can ensure that the multi-agent system
behaves in accordance with the design goals. The classic game theory models
assume an idealistic situation: all the agents know what the equilibrium is, all
the agents know what other agents do, and all the agents know what their role is
in the equilibrium. The agent behaviour goes in cycles: the agents perceive their
environment, decide what action to perform, and then perform the action. Can
we ensure that multi-agent systems go to the equilibrium through these feedback
cycles and stay in the equilibrium, as intended by the designers?

Many real world applications are continuously evolving games: agents join the
game in a sequence, they influence the game for a while, and then they quit the
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game. In these games, the decisions of the agents are often intertemporal choices:
the current decision of the agent may affect the utility of the agents in the future.
The equilibrium of such evolving games is the intertemporal equilibrium.

Intertemporal equilibrium [6] has two interpretations in economic theory. One
interpretation is related to the intertemporal aspect of the choice. The other
interpretation is related to the temporal aspect of the equilibrium: at any given
time, the economy is in disequilibrium, and the equilibrium can be interpreted
only in the long term. In this paper, we focus on the latter interpretation, and
we take into account that agents have intertemporal expectations.

In order to study how to control global behaviour over time, we take the
large-scale and open multi-agent system of the road traffic application area, and
in particular the online routing problem. The online routing problem is a network
with traffic flows going from a source node to a destination node. The agents of
the traffic flows continuously enter the network at the sources, they choose a full
route to the destination of their trip, and quit the network at the destination.
The traffic is routed in a congestion sensitive manner.

2 Related Work

The static equilibrium is an important concept of game theory. Algorithmic game
theory [8] investigated the routing problem where decentralised autonomous de-
cision making is applied by the traffic flows. This game theory model is in line
with the assumption of the traffic engineers, who assume that the traffic is always
assigned in accordance with the static equilibrium [15]. The potential function
is used to prove the existence of equilibria, and an upper limit on the price of
anarchy is also proved [8].

The evolutionary dynamics of games is usually investigated in repeated games
where the agents receive feedback by observing their own and other agents’
actions and utility, and in the next game they may change their own actions.
The potential function method is extended to prove that the repeated routing
game converges to the static equilibrium [5]. Another type of feedback is regret
minimisation, where agents compare their actually experienced utility with the
best possible utility in retrospect. It is proved that if the agents of the routing
game select actions to minimize their regret, then their behaviour converges to
the static equilibrium [1]. The repeated game approach captures the evolutionary
dynamic between routing games, but not within the routing game.

The deterministic queuing model is an approximation to investigate how traf-
fic flows evolve over time. The Nash flows over time in non-atomic queuing net-
works is characterised and several bounds on the price of anarchy are proved in
[7]. Single source fluid queuing networks reach a steady state in finite time if the
inflow does not exceed the capacity of the network [4]. The queuing model does
not have usage dependent cost of the edges if the inflow is below the maximum
capacity, because in this flow range the edge has a constant delay.

The evolutionary dynamic inside the routing game is captured by the online
routing game model, where the traffic flow is made up of individual agents who
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follow each other, and the agents of the traffic flow decide individually on their
actions based on the real-time situation. The reader is referred to the openly
accessible article [9] for the formal description of the online routing game model.

It is proved [10] that if the agents of the online routing game try to max-
imise their utility computed from the real-time situation (without taking into
account any expectation), then equilibrium is not guaranteed, although a static
equilibrium exists. In order to facilitate the agents to make predictions and in-
clude future conditions in their decisions, intention-aware prediction methods
were proposed. In the intention-aware prediction methods, the agents commu-
nicate their intentions to a service. The service aggregates the data about the
agent collective, and it sends a feedback to the agents [2]. The intention-aware
[16] and the intention propagation [3] approaches are based on this scheme.

It is proved [9] that there is no guarantee on the equilibrium, even if intention-
aware prediction is applied. However, it is proved [11] that in a small but complex
enough network of the Braess paradox, the agents might just slightly be worse off
in the worst case with real-time data and prediction. It is also proved [13] that in
the network of [11], the system converges to the static equilibrium within a rela-
tively small threshold. The conjecture in [12] says that the system converges to
the static equilibrium in bigger networks as well if simultaneous decision making
is prevented. This conjecture neither has been proved nor refuted analytically.

3 Intention-Aware Prediction Methods

The formal description of the algorithms of two intention-aware prediction meth-
ods were presented at [14]: the detailed prediction method and the simple pre-
diction method.

The detailed prediction method takes into account all the intentions already
submitted to the service, then it computes what will happen in the future if the
agents execute the plans assigned by these intentions, and then it computes for
each route in the network the predicted travel time by taking into account the
predicted future travel times for each road of the route. The prediction algorithm
used in [16] is close to this detailed prediction method, but the main difference is
that the prediction algorithm of [16] uses probabilistic values, while the detailed
prediction method is deterministic.

The simple prediction method also takes into account all the intentions al-
ready submitted to the service, however when it computes for each route in the
network the predicted travel time, then it takes into account only that travel
time prediction for each road which was computed at the last intention submis-
sion. This way, the simple prediction method needs a little bit less computation.
The simple prediction method is a kind of approximation and does not try to
be an exact prediction of the future. As time goes by, if no new prediction is
generated for a road, then the simple prediction method ”evaporates” the last
prediction for that road, like the bio-inspired technique of [3].

The investigations in [14] left the issue of the convergence to the equilibrium
open.
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4 Experimental Set-up

In order to investigate empirically the intertemporal equilibrium, a region of
Budapest (shown in Fig. 1) was modelled in the simulation software of [10].
The figure shows the route choices towards the destination Rákóczi bridge (E
in the figure) from two sources: the suburban area (A) and the intercity road
(B). Information on the traffic flow going on these roads can be obtained from
the web site1 of the Hungarian Public Road Non-profit PLC. The minimum
travel time in minutes (fixed part of the cost function) for the roads is 1.5 times
the distance. The variable part of the travel time is roadlength ∗ flow ÷ 10,
thus the cost functions are the following: c(A,C)(flow) = 2.1 + 1.4 ∗ flow ÷ 10,
c(B,C)(flow) = 1.5 + 1.0 ∗ flow ÷ 10, c(C,D)north

(flow) = 6.0 + 4.0 ∗ flow ÷ 10,
c(C,D)south

(flow) = 10.2 + 6.8 ∗ flow÷ 10, c(D,E)(flow) = 1.8 + 1.2 ∗ flow÷ 10,
where the cost is in minute and the traffic flow is in car ÷minute.

Fig. 1. The Google Map extract showing the realistic scenario of the experiments

The experiment simulates a 90 minute long rush hour period extended with
a 17 minute initial period to populate the roads to some extent. Several experi-
ments were run at traffic flow values from 2.5 car ÷minute to 30 car ÷minute
in steps of 2.5. The incoming flow values were the same at points A and B.
Simultaneous decision making was excluded.

All the experiments were executed in three versions using three different rout-
ing strategies: 1) no prediction routing strategy, 2) detailed prediction routing
strategy, and 3) simple prediction routing strategy. The no prediction routing
strategy is the simple naive (SN) online routing game of [10], where the rout-
ing strategy selects the shortest travel time observable in the real-time status
of the network. The latter two strategies are intention-aware routing strategies
where the routing strategy selects the shortest predicted travel time using the
corresponding prediction method as described in Section 3.

1 http://internet.kozut.hu/Lapok/forgalomszamlalas.aspx

http://internet.kozut.hu/Lapok/forgalomszamlalas.aspx
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5 Measure of Intertemporal Equilibrium

In order to explain how we quantify the intertemporal equilibrium, we measured
the travel times of the trip A−E with all three routing strategies at flow value
20 car ÷minute. Due to lack of space, we cannot show the measurements here.
The time period of a bit more than 450 minutes was selected to show that the
travel times do not seem to converge to a steady value. This is in line with our
interpretation of intertemporal equilibrium: at any given moment the system is
in disequilibrium and the equilibrium can be interpreted only in a time period.

We can also see from the measurements that the travel time seems to remain
within a limit from a kind of equilibrium value. The worst case difference might
be big, but if the system fluctuates around a kind of equilibrium, then we consider
it as intertemporal equilibrium.

We can also see from the measurements that sometimes there are big dif-
ferences in the travel times of the agents that ended their trips at almost the
same elapsed time of the experiment. This means that there was an agent which
arrived through a non congested route, and another agent arrived through a con-
gested route almost at the same time. The smaller travel time differences seem
to coincide with smaller swings in the system. The smaller swings are probably
because the agents have almost equal intertemporal choices during the experi-
ment, although the system is fluctuating all the time. We call this phenomenon
”quasi equilibrium within the disequilibrium”.

Based on the above observations, we define the quantitative measure of in-
tertemporal equilibrium the following way:

Definition 1. Let ORG =< t, T,G, c, r, k > be an online routing game over
the finite sequence of time steps t. Let cri(τ) be the cost of the agent of trip
ri ∈ r when it exits the game at time step τ ∈ t. Let eri be the static equilibrium
travel time for trip ri. The measure of intertemporal equilibrium of ORG
is < WD,AD,QE > where WD = max

ri∈r
(max
τ∈t

((cri(τ) − eri) ÷ eri)) , AD =

avgri∈r((avgτ∈t(cri(τ)−eri))÷eri) , and QE = avgri∈r(avgτ∈t(|cri(τ)−cri(τ +
1)| ÷ eri)).

In the ideal case the system stays continuously in the static equilibrium, in
which case the intertemporal equilibrium is < WD = 0, AD = 0, QE = 0 >. If
QE = 0, then the system is in a kind of quasi equilibrium, and the WD and AD
values indicate how worse this equilibrium is than the static equilibrium.

Note that the QE is an important part of the intertemporal equilibrium, and
it includes much more information than usual statistical values like for example
the standard deviation of travel times. Two experiments may have the same
standard deviation, but they may have different QE values.

6 Evaluation of the Experiments

Before the experiments, our expectation was that we could confirm the following
hypotheses:
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H1: The intention-aware routing strategies produce better intertemporal equilib-
rium values than the non predictive routing strategy.

H2: The detailed prediction routing strategy produces better intertemporal equi-
librium values than the simple prediction routing strategy, because the sim-
ple prediction method does not try to be precise.

The worst case difference values (WD) of the intertemporal equilibrium of
the experiments are shown in Fig. 2. The horizontal axis is the traffic flow rate
value of each experiment, in car÷minutes. The WD is zero at low traffic flows,
because all the traffic can go on the shortest route, and this is the static equi-
librium as well. At higher traffic values, the WD increases, it even reaches 1 in
the case of the no prediction routing strategy. The WD of the detailed predic-
tion routing is better than the WD of the no prediction routing in most of the
experiments. The WD of the simple prediction routing is better than the WD of
the detailed prediction routing. The WD values confirm hypothesis H1 in most
of the experiments, but they refute hypothesis H2.

Fig. 2. The worst case difference values (WD) in the experiments

The average difference values (AD) of the intertemporal equilibrium of the
experiments are shown in Fig. 3. The AD is zero at low traffic flows, like in the
case of the WD. At higher traffic values, the AD increases, but it is considerably
less than the WD. The AD of the detailed prediction routing is better than
the AD of the no prediction routing in most of the experiments. The AD of
the simple prediction routing is better than the AD of the detailed prediction
routing. The AD values confirm hypothesis H1 in most of the experiments, but
they refute hypothesis H2.

Fig. 3. The average difference values (AD) in the experiments
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The quasi equilibrium values (QE) of the intertemporal equilibrium of the
experiments are shown in Fig. 4. The QE is zero at low traffic flows. At higher
traffic values, the QE increases, but they are much smaller for the detailed pre-
diction routing and the simple prediction routing than for the no prediction
routing. The QE of the simple prediction routing is better than the QE of the
detailed prediction routing. The QE of the simple prediction routing is very close
to zero. The QE values confirm hypothesis H1, but they refute hypothesis H2.

Fig. 4. The quasi equilibrium values (QE) in the experiments

7 Discussion

We have investigated the evolutionary dynamics inside games, in particular on-
line routing games. There is a conjecture that online routing games with specific
properties converge to the static equilibrium. In this paper we took a differ-
ent approach to the issue of convergence to the equilibrium. Instead of proving
the convergence, we studied the nature of the kind of equilibrium that seems
to appear in online routing games. With this work we contribute to the better
measurement and control of the global behaviour of multi-agent systems.

One of the results is that if the agents of the online routing game base their
decisions only on the current situation, then the global behaviour over time is
worse than in the case when they have a prediction of the future.

Another result is that knowing a more precise prediction of the future does
not lead to a better global behaviour over time in the experiments. This is
unexpected. In our view, this is an important new result, because it demonstrates
in a controllable experiment that the selfish adaptation of the individual agents
to a less precisely expected future leads to better agent system behaviour. Better
knowledge of the future may not be better for the multi-agent system. This is
an important design guideline for engineering multi-agent systems.

Finally, the formal definition of the measure of intertemporal equilibrium in
online routing games is an important result, because it gives better insight into
the dynamic behaviour of multi-agent systems. We have defined a measurement
value for the quasi equilibrium in the disequilibrium. The presented experiments
show that better QE values correspond to better system behaviour. This result
is a guidance for the design of better multi-agent systems.
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