
Designing a Cognitive Agent Connector
for Complex Environments:

A Case Study with StarCraft

Vincent J. Koeman, Harm J. Griffioen, Danny C. Plenge, and Koen V. Hindriks

Delft University of Technology, The Netherlands
{v.j.koeman,h.j.griffioen,p.c.plenge,k.v.hindriks}@tudelft.nl

Abstract. The evaluation of cognitive agent systems, which have been
advocated as the next generation model for engineering complex, dis-
tributed systems, requires more benchmark environments that offer more
features and involve controlling more units. One issue that needs to be
addressed time and again is how to create a connector for interfacing
these agents with such richer environments. Cognitive agents use knowl-
edge technologies for representing state, their actions and percepts, and
for deciding what to do next. Issues such as choosing the right level of
abstraction for percepts and action synchronization make it a challenge
to design a cognitive agent connector for more complex environments.
The leading principle for our design approach to connectors for cogni-
tive agents is that each unit that can be controlled in an environment
is mapped onto a single agent. We design a connector for the real-time
strategy (RTS) game StarCraft and use it as a case study for establishing
a design method for developing connectors for environments. StarCraft is
particularly suitable to this end as it requires the design of complicated
strategies for coordinating hundreds of units that need to solve a range of
challenges including handling both short-term as well as long-term goals.
We draw several lessons from how our design evolved and from the use
of our connector by more than 300 students. Our connector is the first
to provide full access for cognitive agents to StarCraft.

1 Introduction

Current cognitive agent technology offers a viable and promising alternative to
other approaches for engineering complex distributed systems [5, 11]. However,
Hindriks [5] also concludes that “if [cognitive] agents are advocated as the next
generation model for engineering complex, distributed systems, we should be
able to demonstrate the added value of [multi] agent systems.” Designing a con-
nector that can demonstrate this added value by connecting cognitive agents
with an environment that puts strict real-time constraints on the responsiveness
of agents, requires coordination at different levels (ranging from a few agents to
large groups of agents), and requires complex reasoning about long-term goals
under a high level of uncertainty is not a trivial task. The connectors that are
currently available for use with cognitive agent systems have remained rather
simple, and thus do not fully demonstrate the value of cognitive technologies.



2 V.J. Koeman et al.

In this paper, we aim to establish a design approach for developing connectors
for complex environments, aimed at facilitating the development of more con-
nectors that can be used to demonstrate the ease of use of cognitive technologies
for engineering large-scale complex distributed systems for challenging environ-
ments. We believe that RTS games that deploy large numbers of units provide an
ideal case study to this end [3, 13]. The basic idea is to control each unit with a
cognitive agent. Based on this, and in accordance with Google (DeepMind) and
many other AI researchers [10, 12], we believe that StarCraft is the most suitable
RTS game to target in our case study. Moreover, several popular competitions
exist for StarCraft AI that can serve as a benchmark for implementations that
use cognitive technologies [12]. By carefully designing and efficiently implement-
ing a cognitive agent connector to StarCraft, and then testing this connector with
large groups of students, we iteratively refine our approach for the development
of agent-environment connectors.

Our focus in this paper is on the case study of designing a connector that en-
ables and facilitates the use of cognitive agent technology for engineering strate-
gies for StarCraft (Brood War) based on a one-to-one unit-agent mapping, which
is different from most existing StarCraft AI implementations. This unit-agent
mapping introduces important challenges that need to be addressed:
1. The connector should facilitate a MAS that operates at a level of abstraction

that is appropriate to cognitive agents.
2. The connector should be sufficiently performant in order to support a suf-

ficient variety of viable MAS implementations using cognitive agents (i.e.,
both different approaches to implementing strategies as well as the use of
different agent platforms).

In other words, the connector design should not force a cognitive MAS to op-
erate at the same level of detail as bots written for StarCraft in C++ or Java,
but also not promote the other extreme and abstract too much (e.g., clearly the
extreme abstraction of providing a single action ‘win’ is not useful). To make op-
timal use of the reasoning typically employed by cognitive agents, the connector
should leave low-level details to other control layers whilst still allowing agents
sufficiently fine grained control.

2 Related Work

Connectors that support connecting cognitive agent technology to games have
been made available for other games [2]. So far, however, most connectors have
remained rather simple. The most complex cognitive multi-agent connectors that
have been made available so far, are connectors for Unreal Tournament [6].
The design of such a connector involves similar issues related to the facilitated
level of abstraction and the resulting performance as in this work. However,
the resulting implementation as reported on by Hindriks et al. [6] does not
support running more than 10 agents, whereas for a StarCraft interface we need
to connect hundreds of cognitive agents to control the hundreds of units in
game. Moreover, corresponding agent systems for Unreal Tournament generally



Designing a Cognitive Agent Connector for Complex Environments 3

offer only a very restricted set of actions that agents can perform (i.e., mostly
just a “go to” action because other middleware software is used to take care
of path planning, shooting, etc.) or communication (i.e., mostly just informing
others about enemy positions), limiting the complexity of decision making that is
required. Relatively speaking, compared to StarCraft, the diversity in strategies
or tactics that can be deployed is rather small. It is therefore not feasible to
derive a design approach for connectors to richer environments from this work.

RTS games are widely regarded as an ideal testbed for AI [10, 13]. An RTS
game like StarCraft involves long-term high-level planning and decision making,
but also short term control and decision-making with individual units. This dis-
tinction between respectively strategical and tactical decision making is generally
referred to as macro and micro respectively. These factors and their real-time
constraints with hidden information make RTS games like StarCraft ideal for
iterative advancement in addressing fundamental AI challenges [13]. Although
machine learning solutions have been applied to some problems at the micro
level, learning techniques have not been successfully applied to other aspects,
mainly due to the vast state spaces involved [12]. The concepts of cognitive
agents seem to be a good fit for addressing these challenges, allowing individ-
ual cognitive agents to reason about their tactical decision making whilst also
inherently facilitating communication to make decisions at a joint strategical
level. The reasoning typically applied by cognitive agents seems to lend itself for
macro really well, but such systems can potentially employ learning techniques
to perform specific sub-tasks (at the micro level) as well.

The prototypical RTS game is StarCraft [12], originally developed by Bliz-
zard in 1998, but still immensely popular both in (professional) gaming and
AI research. An API for StarCraft (Brood War) has been developed for several
years: BWAPI [4]. BWAPI reveals the visible parts of the game state to AI im-
plementations, facilitating the development of competitive (non-cheating) bots.
Several dozens of such bots have been created with this API, mostly written in
C++ or Java, aimed at participating in one of the tournaments that are being
held for StarCraft AI implementations. However, this work does not directly
facilitate cognitive agents that use knowledge technologies and realise a one-to-
one unit-agent mapping. A first attempt at creating a cognitive interface for
StarCraft was performed by Jensen et al. [7]. In this work, a working proof-of-
concept that ties in-game units to cognitive agents was introduced. However, it
does not address the major challenges such an implementation faces concerning
the level of abstraction and corresponding performance, as we do in this work.
When using this connector, it is not possible to create viable (diversities of)
strategies, as the range of strategies it supports is quite limited. This connector
only offers a small subset of all possible actions associated with each unit in the
game, and the percepts made available by the connector do not provide sufficient
information for in game decision making either. In this work, we aim to allow
virtually any strategy to be implemented with a sufficient level of performance
using a cognitive agent connector based on the design approach we propose.



4 V.J. Koeman et al.

3 Case Study: StarCraft

In StarCraft, each of the three playable races have their own set of unit types.
Although many races share similar types of buildings (e.g., depots to bring re-
sources to), there are also substantial differences to take into account (e.g., units
‘morphing’ into a different type of unit). For most types of units there are usu-
ally multiple ‘instances’ (i.e., individual units) in a game, thus allowing anywhere
from 5 up to 400 units representing one army in the game at a certain time. De-
pending on factors such as game length, the average number of units for one
army in a typical game at any point in time is around 100, although many units
will also die during the game (i.e., the total number of agents used is much
higher). Performance is thus of vital importance, as a substantial performance
impact will limit the amount of viable strategies.

Our cognitive agent connector to StarCraft was developed and refined in
three iterations. We draw several general lessons from these iterations, which we
have incorporated into our proposal for a connector design approach. Initially, a
pilot was held with around 100 Computer Science masters students that worked
in groups on creating a StarCraft bot using this connector. More recently, over
200 first year Computer Science bachelors students did the same with an im-
proved version of the connector, being the largest StarCraft AI project so far.
We continued development of the connector after this project, and made several
additional improvements.

4 Connector Design Approach

In this section, we discuss our design approach for a cognitive agent connector.
The core of such a connector consists of three components: (i) the entities that
are provided for agents to connect to (i.e., units in an RTS game), (ii) the outputs
that are generated by each entity (and thus which percepts a corresponding
agent receives), and (iii) the inputs that are available for each entity (and thus
which actions an agent controlling the entity can perform). We make some basic
assumptions about the architecture of a cognitive agent. We assume such an agent
pro-actively reasons about the actions that it should take based on (for example)
its goals and beliefs in some fixed decision cycle that is asynchronous from the
environment in which it operates (for a certain entity in that environment),
from which it receives information through percepts. Multiple agents can work
together in one multi-agent system, which is not centrally controlled but does
facilitate direct messaging between (groups of) agents. Our connector makes use
of the Environment Interface Standard [1] for interacting with MAS platforms.

4.1 Micro and Macro Management

In complex environments such as StarCraft, a crucial distinction exists between
top-down strategical decision making (macro) and bottom-up tactical decision
making (micro). The basic assumption that we make is that a connector needs



Designing a Cognitive Agent Connector for Complex Environments 5

to provide support for a multi-agent approach based on a one-to-one unit-agent
mapping, which inherently facilitates decision making from a bottom-up per-
spective. At the micro level, every unit that is active in the environment should
be mapped onto an entity that a cognitive agent can connect to in order to con-
trol the behaviour of the unit. For StarCraft, this thus means that any moving or
otherwise active unit such as a building will be controlled by a cognitive agent.

Although we initially assumed that the emergent behaviour from these agents
would be sufficient to cover the strategical aspects, in practice this was hindered
by the high dynamicity of an environment such as StarCraft, for example illus-
trated by the fact that any unit can be killed at any point in time. To facilitate
macro management, we therefore have introduced a new, special kind of enti-
ties, so-called managers, which are made available by the connector. Managers
do not match with unique in-game units, and as such they do not naturally
have percepts or actions associated with them. However, as they still need to be
informed about the state of the game in order to perform strategical decision
making, they instead should have the ability to receive desired global information
through percepts as for example indicated in the initialization settings.

4.2 Local and Global Information

The set of available percepts determines what information a specific entity ‘sees’
during the game, and thus what information its corresponding agent will receive.
Percepts have a name to describe them and a set of arguments that contain the
actual data. For example, a percept could be defined as map(Width, Height),
and an agent could then receive map(96, 128) in a match. In order to determine
the percepts that are created for each type of unit, our approach proposes several
design guidelines. A key foundation of our approach to handling information from
complex environments such as StarCraft is that there is a difference between
‘local’ information that is specific to a certain unit in the game (e.g., a unit’s
health) and ‘global’ information that is potentially relevant to all units (e.g.,
the locations of enemy units). An agent should be able to perceive all local
information that is specific to its corresponding unit’s state, whilst a manager
agent should be able to perceive all global information that is needed for its
strategic (macro) reasoning. However, pieces of global information might also be
needed in the agent for a specific unit (e.g., nearby enemy units in StarCraft).

To this end, we initially pushed all global information to all unit and man-
ager entities, as a connector cannot determine which parts of this information
a specific agent will need. However, our case study showed that this caused a
significant performance impact with larger numbers of units. We have therefore
found it useful to provide specific mechanisms to a developer to fine-tune the
delivery of global percepts. Through the connector’s initialization settings, a list
of desired ‘global information’ (i.e., names of percepts) can be given (“subscribed
to”) for each unit type. This way, a developer can decide which information is
relevant for certain agents, instead of such information being sent to agents at
all times. This mechanism can also be used for specifying in more detail which
global information a certain manager agent needs to be made aware of. Finally,



6 V.J. Koeman et al.

we assume that when local information is needed for macro reasoning, this can
be sent to the appropriate manager agent by the agent for a specific unit within
the agent platform; it is thus not required to handle this within the connector.

The ease of use of the percepts for an agent programmer should also be
taken into consideration, i.e., by grouping related pieces of information together.
The design guideline here is that one should only group sets of parameters that
naturally belong together. Moreover, to avoid having to deal with different kinds
of percepts for each type of unit, a design guideline is that the percepts should
be as generic as possible in order to facilitate re-use between different agents.
This guideline is aimed at reducing the number of different concepts introduced
in our percept ontology, and thus aims for efficiency of design.

Performance One of the main challenges is how to deliver all percepts while
guaranteeing sufficient performance levels. It is important to manage the per-
cept load of individual agents, as creating the information needed for percepts
(i.e., in the connector) and relaying that information to one or multiple agents
who then have to make this information available for use in reasoning (i.e., by
representing them in a Prolog base) is the most resource intensive task in a
connector. In contrast to actions, of which usually at most one is selected per
decision cycle, there are usually many percepts (all containing various amounts
of information) sent to each agent per decision cycle. We therefore introduce a
number of optimization guidelines which aim to either reduce the total number
of percepts an agent will have (to store) or the amount of updates to this set of
percepts that an agent will have to process.

Complex environments have a lot of static information to which all individual
agents may need to have access, like what a certain unit costs to produce or what
kinds of units a certain building can produce in StarCraft. Because such environ-
ments also introduce many units (and thus many agents), the initialization costs
for such information for each of these agents can have a rather big impact on a
connector’s performance. To avoid this issue as much as possible, we introduce
another design guideline to only create percepts for information that changes
in a single match or between matches. Static information is better suited to be
encoded in the agent system itself instead of being sent through percepts, as
this will significantly reduce the performance when initializing an agent (which
as aforementioned can happen many times during a game as large numbers of
units come and go almost constantly). To this end, information that is fixed by
the game itself can be coded as a separate part of the ontology that can and
needs to be loaded only once at the start of the game. Agents will still need to be
informed about changes between matches, e.g., map-specific information should
not be included in the ‘fixed part’ of the ontology. Another guideline to keep the
number of percepts low is to ensure that no data is sent through percepts that
can either be calculated based on other data (e.g., the number of friendly units
by counting the number of percepts about their status), or retrieved from other
agents (e.g., the position of a friendly unit). Relaying information (like friendly
unit positions) through messaging between the agents in a MAS is usually much



Designing a Cognitive Agent Connector for Complex Environments 7

more efficient, as an agent programmer can then selectively choose at which times
and to which units to send specific pieces of information, as opposed to percepts
always being sent to certain units even when they do not require them (at that
time). For StarCraft, combining the (finite set of) information that is available
through the BWAPI interface with the guidelines as posed in this section lead
to a set of about 25 percepts1.

5 Conclusions and Future Work

We have presented a design approach for creating connectors for cognitive agent
technology to (complex) environments, illustrated by a case study of a cognitive
agent connector that provides full access to StarCraft. A major challenge that
was addressed during the development of this connector was to ensure corre-
sponding agent systems can be programmed at a high level of abstraction whilst
simultaneously allowing sufficient variety in strategies to be implemented by
such systems. Based on this challenge, design guidelines for determining the set
of available set in agent-environment connectors were determined. The viability
of our approach is demonstrated by multiple large-scale practical uses of the
StarCraft connector, resulting in a varied set of competitive AIs.

Ensuring a sufficient level of performance of the connector was a significant
challenge that had to be addressed in particular in order to demonstrate that a
unit-agent mapping (MAS) approach is viable. In our evaluations, which we can-
not extensively report on in this paper due to space constraints, we determined
the baseline performance of the connector in a worst-case scenario, which shows
that on average there remains sufficient CPU time for strategic reasoning in a
cognitive MAS. Even though the performance of such a MAS depends largely on
the agent technology used itself, we believe that our connector can be effectively
used in practice. Although our case study is focused on the ‘Brood War’ version
of StarCraft, the brand new ‘raw API’ of StarCraft 2 is reported to be similar
to BWPAI in Vinyals et al. [14], and the work in this paper should therefore
be relatively straightforwardly applicable and/or portable to StarCraft 2 (and
possibly other RTS games) in future work.

Finally, through the development and use of our connector for StarCraft, a
number of challenges to cognitive agent technologies were identified. One of those
challenges is the fact that debugging (cf. Koeman et al. [9]) becomes increasingly
difficult with increasing numbers of agents. As debugging concurrent programs
is a hard problem in general, more work is required in this area; it could for
example be useful to visualize the interaction between agents or the CPU time
required by each agent. In addition, in order to better support automated test-
ing, (cf. Koeman et al. [8]), it may be beneficial to develop a mechanism that
automatically saves the state of a MAS when a save game is created in Star-
Craft. This can be used to immediately initialize a MAS to the desired state
when executing a test with a specific save game (i.e., a scenario).
1 For the full set of percepts and actions, we refer to https://github.com/eishub/

Starcraft/blob/master/doc/Resources/StarCraftEnvironmentManual.pdf.



8 V.J. Koeman et al.

References

1. Behrens, T.M., Hindriks, K.V., Dix, J.: Towards an environment interface
standard for agent platforms. Annals of Mathematics and Artificial Intelli-
gence 61(4), 261–295 (2011)

2. Dignum, F.: Agents for games and simulations. Autonomous Agents and
Multi-Agent Systems 24(2), 217–220 (Mar 2012)

3. Dignum, F., Westra, J., van Doesburg, W.A., Harbers, M.: Games and
agents: Designing intelligent gameplay. International Journal of Computer
Games Technology 2009 (2009)

4. Heinermann, A.: Brood War API. https://github.com/bwapi/bwapi
(2008), accessed: 2018-05-12

5. Hindriks, K.V.: The Shaping of the Agent-Oriented Mindset, pp. 1–14.
Springer International Publishing (2014)

6. Hindriks, K.V., van Riemsdijk, B., Behrens, T., Korstanje, R., Kraayenbrink,
N., Pasman, W., de Rijk, L.: Unreal GOAL bots. In: Dignum, F. (ed.) Agents
for Games and Simulations II: Trends in Techniques, Concepts and Design,
pp. 1–18. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

7. Jensen, A.S., Kaysø-Rørdam, C., Villadsen, J.: Interfacing agents to real-
time strategy games. In: SCAI. pp. 68–77 (2015)

8. Koeman, V.J., Hindriks, K.V., Jonker, C.M.: Automating failure detection
in cognitive agent programs. In: Proceedings of the 2016 International Con-
ference on Autonomous Agents & Multiagent Systems. pp. 1237–1246. AA-
MAS ’16, International Foundation for Autonomous Agents and Multiagent
Systems, Richland, SC (2016)

9. Koeman, V.J., Hindriks, K.V., Jonker, C.M.: Designing a source-level de-
bugger for cognitive agent programs. Autonomous Agents and Multi-Agent
Systems 31(5), 941–970 (Sep 2017)

10. Lara-Cabrera, R., Cotta, C., Fernández-Leiva, A.: A review of computational
intelligence in RTS games. In: 2013 IEEE Symposium on Foundations of
Computational Intelligence (FOCI). pp. 114–121 (Apr 2013)

11. Logan, B.: A Future for Agent Programming, pp. 3–17. Springer Interna-
tional Publishing, Cham (2015)

12. Ontañón, S., Synnaeve, G., Uriarte, A., Richoux, F., Churchill, D., Preuss,
M.: A survey of real-time strategy game AI research and competition in Star-
Craft. IEEE Transactions on Computational Intelligence and AI in Games
5(4), 293–311 (Dec 2013)

13. Robertson, G., Watson, I.: A review of real-time strategy game AI. AI
Magazine 35(4), 75–104 (2014)

14. Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A.S.,
Yeo, M., Makhzani, A., Küttler, H., Agapiou, J., Schrittwieser, J., et al.:
StarCraft II: A new challenge for reinforcement learning. arXiv preprint
arXiv:1708.04782 (Aug 2017)


