
Ravel: A MAS orchestration platform for
Human-Chatbots Conversations

Maira Gatti de Bayser, Claudio Pinhanez, Heloisa Candello, Marisa Affonso
Vasconcelos, Mauro Pichiliani, Melina Alberio Guerra, Paulo Cavalin, and

Renan Souza

IBM Research, Brazil

Abstract. This paper presents Ravel, a multiagent systems (MAS) plat-
form aimed to integrate natural language understanding components
with orchestration components of dialogues between human beings and
agents. Ravel enables the specification of (social) conversations norms,
using deontic logic, for use in contexts where multiple agents and human
users are conversing in natural language. We demonstrate the usefulness
and versatility of Ravel in a chat-based finance adviser system designed
as a chat group of five participants: four collaborative chatbots with two
different roles (mediator and expert) and a human or chatbot user.

Keywords: Multi-Agent System · Norms · Social Chatbots · Dialogue

1 Introduction

In the last two decades, the Agent-Oriented Software Engineering community
has created several processes, methods, and tools to develop agent-based systems
[6] [10] [17] [2], which has been successfully applied to many applications and do-
mains. More recently, the Natural Language Processing community has achieved
excellent results on machine learning, using SVM and Neural Networks, for natu-
ral language understanding at several tasks, from intent detection to turn-taking
in dialogue systems [22] [12] [7] [3].

There is still though a lack of work which combines both solutions into a
common platform and enables developers to build agents which not only under-
stand natural language but also interact with multiple humans and other agent
simultaneously in conversation contexts such as chats (aka chatbots). Most of
current industry chatbots, like Siri and Cortana, for instance, are dyadic chat-
bots, that is, they are designed to handle only one speaker at a time. A key
challenge faced by chatbots in multi-party conversations is turn-taking [5] [4],
that is, determining whether they should or not produce an utterance at any
moment of the dialogue.

Therefore, the main contribution of our work is a MAS orchestration plat-
form for multi-party chat-oriented dialogues, called Ravel. Ravel was evaluated
with an application called finch, an investment adviser system with four chat-
bots which cooperate to help users to explore low-risk investment options. To

2 M.Gatti de Bayser et al.

orchestrate finch conversations, around 15 conversation norms based on deontic
modes [23][21] are successfully applied by Ravel even in the context of several
simultaneous users with an average chatbot response time of less than 1 sec.

2 finch : Finance Cooperative Chatbots

In this section we present finch: an interactive investment adviser system, which
helps users to make more informed low-risk investment decisions in Brazil. It
was designed as a WhatsApp-like chat where a user can converse with four chat-
bots representing three investment products playing the role of experts, and one
to mediate the conversation, playing the role of a friendly finance investment
counselor. The three chatbot experts are gurus on low-risk Brazilian financial
products: SA, expert in savings account; TB, expert in treasury bonds; and CD,
expert in certificate of deposit. The mediator chatbot is the In (investment ex-
pert) which moderates the conversation, helps to summarize it, and prompts the
user to make more questions.

The conversation start with the investment bot (In) informing the user the
possibility to ask about concepts or to ask for simulation on return of investments
for each investment option. The user then asks to simulate for four thousands
as the initial amount in three years. The idea is that after the first utterance is
sent by the investment chatbot (In), the bots expect the user reply and the bots
must not reply to the investment bot . In a chat group, since all the utterances
are broadcasted to all participants, the investment chatbot will receive its own
utterance back, so it must not reply to itself.

Moreover, when the user replies to some utterances, we have a situation
where the user is (still) allowed to reply, the investment chatbot (In) is ought to
reply and the investment option experts (TB, SA and CD) are forbidden to re-
ply. We expect the investment chatbot (In) to mediate the simulation by asking
any partial information needed before the experts bots can compute the simu-
lation and reply. So, for instance, if the user sends a message such as ”I would
like to invest in 3 years” without mentioning the investment amount, then the
investment chatbot (In) has to ask the user that amount. Following, investment
chatbot (In) then produces a request to all the expert chatbots to simulate the
investment, blocking the user, and giving them permission to speak. When one
of the expert chatbots replies, they are no longer expected to interact in the chat
unless a new utterance requires. The same rule is applied for each expert chatbot
which answers afterwards. When finally all experts have answered, the invest-
ment chatbot (In) then has an obligation to inform which investment option is
the best according to the simulation results.

Another interesting example of the complexity of turn-taking which has to be
handled is when the user asks questions about some of the investment products
and related concepts. Given a question about one of the investments from the
user, the expert chatbot associated with that concept must answer. If it is not
possible to determine the specific topic, the chatbot which answered the last
question keeps with the obligation to answer. If the user mention the name of

Ravel: A MAS orchestration platform for Human-Chatbots Conversations 3

a specific chatbot (using the ”@name” moniker), that chatbot has an obligation
to reply too.

For implementing finch with the said requirements, there is a need to engineer
a MAS-based platform with an environment where each chatbot is implemented
as an agent and requires sets of natural language understanding components in
order to interact in a chat group. In addition, it is needed that the interaction
is coherent and that the chatbots do not reply to each other, unless explicitly
required by another chatbot.

3 Background on MAS and Related Work

In this section we present the state of the art on governance of multi-agent
systems, since it is related to the governance of the conversation of chatbots
(considering each chatbot as an agent). Given a law as a set of rules which governs
the interaction, Minsky et al. proposed the Law-Governed Interaction (LGI)
conceptual model about the role of interaction laws on distributed systems, and
conducted further work and experimentation based on those ideas [15]. However,
his approach lacked the ability to express high level information of social systems.
Following the same approach but more at the agent social level, the Electronic
Institution framework [1] provided support for interaction rules. The Electronic
Institution has a set of high-level abstractions which allows for the specification
of laws using concepts such as agent roles, norms, and scenes. Also at the agent
social level, in open multi-agent systems, the XMLaw description language and
the M-Law framework [19] [18] were proposed and developed to support law-
governed mechanisms. More recent work regarding coordination in open multi-
agent systems can be found here [2]. To our knowledge, none of them support
the kind of hybrid human-agent issues with natural language discussed in this
paper.

At the middleware and platforms level for multi-agent systems, the most
known works are JADE [6], Jadex [20], Jack [9] and Jason [8]. Those platforms
let the agent developer focus only at the logic level of the agent, not having to
worry about the communication management nor having to consider the agent
address in the network. Most of them are FIPA-ACL-compliant with regard to
the message communication protocol between agents, to ensure interoperability
in an open environment. In our case the high-level communication is natural
language and the platform must be able to receive as an input a text in natural
language.

Finally with regard to chatbot engines, or platforms to support the develop-
ment of conversational systems1, there is a lack of research directed to building
inter-message coherence rules integrated with natural language.

1 For instance, IBM Watson Conversation Service: https://www.ibm.com/watson
/services/conversation/

4 M.Gatti de Bayser et al.

4 The Ravel Platform

To address turn-taking and other conversation orchestration issues in multi-
party hybrid chat-based systems, we have developed Ravel. It was designed as
a MAS-based Microservices-driven architecture[16] with Natural Language Un-
derstanding (NLU) and Dialog components to enable agents to communicate
with the users through dialogues with natural language. The MAS environment
is composed of an agent which is a Communication Hub (CH) that enables the
message exchange, the chatbots which are agents, a Connector, which connects
the agents to the CH, and a Conversation Governance (CG) service to orches-
trate the agents dialogues.

The NLU and Dialog components and the CG service are stateless micro-
services. Since the CG service is needed in the MAS environment and is one of
the contributions of this paper we briefly detail it in this section. For a given
input with the message and the current status of the conversation, it checks the
state of the conversation according to the rules and it tags the message with
three attributes: isAllowed, isDenied or isRequired. Each tag corresponds to
the three modes of deontic logic [23] [13] [14][21]: the permission, prohibition or
obligation norms, respectively.

For more information about the CG service, see [4]. It is implemented as an
interpreter of a Domain Specific Language for Conversation Rules, (DSL-CR)
which enables modeling, specification, and execution of multi-party conversation
rules. In the DSL-CR grammar, a conversation is composed of at least three con-
cepts: Participant, Role and Protocol. The Participant can be a chatbot
or a person, while the Role defines the role of the participant in the conver-
sation. The Norm is the deontic mode and can be a permission, obligation, or
prohibition as discussed before. Whenever a Message is exchanged in the con-
versation, the norms which are currently active in the conversation are checked
and, if the message is allowed according to those norms, it can (or must in case
of obligations) be uttered by the participant (human or agent). This verification
is made using the role of the participant which is specified in the utterance.
The message features which can be used to create fine-grained rules depends on
the communication model and may change according to the application domain.
The Message follows the FIPA-ACL specification [11] for a subset of fields.

The Turn in the conversation is the exchange by one single participant of one
message which contains one or more utterances. It represents an event which
can change the state of the conversation or the set of norms which are active in
the conversation such as an utterance arrival. The norms are defined in terms of
for a given turn in a conversations as:
An obligation requires the participant to pro-actively or reactively emit an ut-
terance;
A permission allows the participant to pro-actively or reactively emit an utter-
ance;
A prohibition forbids the participant to emit utterances, or states that they are
not expected in that turn.

For example, a permission like the following can be created:

Ravel: A MAS orchestration platform for Human-Chatbots Conversations 5

Permission: Whenever an utterance with the inform or query speech act and
the savings topic is present, a participant with the savings expert role has the
permission to reply.

In addition, for each message that arrives, the GC service uses variables as
$sender, $last sender and $receivers, besides the participant roles, to identify the
members that can be eligible to receive the activated norms (see please Appendix
B2 with examples of specification for finch application).

Both the agents and client applications connect to CH. Therefore, there are
connectors which manage these connections in a way that the agent does not
need to be aware of the existence of CH. In this way, CH intermediates the
conversation so even traditional and legacy dyadic chatbots can be inserted
into a multi-party context. The CH is the agent responsible for broadcasting
the exchanged messages between the chatbots and the users and is a stateful
microservice because it needs to manage the message queue (inbox): every time
a message arrives, the CH uses its conversation identification to look for the
participants of the given conversation.

The MAS environment is therefore event and message-oriented. The CH lis-
tens to some events in order to handle the incoming messages from chatbots
and users. During inbox checking, a message is peeked and verified by CG Ser-
vice. It decides, according to the defined rules, if the message is allowed to be
broadcasted. If not allowed, that was because of a prohibition. If allowed, it is
either a permission or obligation, and all agents connected to CH and listening
to CH events receive the broadcasted messages, generate the responses and emit
it back to the CH. For more details about CH behavior, please see Algorithm 1
and 2 in Appendix A.

5 Ravel Instantiation

We implemented RESTful agents using Nodejs and deployed them together with
Ravel CH, connectors (one for each agent), and the Governance Service in a
Docker container3 in IBM Cloud4. The agents call the stateless microservices
whenever they need any natural language understanding task. All the specific
actions of the agents for finch, like the one which computes the return of an
investment, are implemented within the agent with the corresponding role. The
MAS environment relies on top of Socket.io5 middleware. The CH is a socket
server, while the connectors and client application are socket clients.

The norms and conversation protocols governing the conversation in finch
are specified using 9 different roles which the user and the agents assume in con-
versations: person, bot, user, mediator, investment product expert, investment
counselor, savings account adviser, certificate of deposit adviser, and treasury
bonds adviser. The agents can play the roles of bot, mediator, expert, investment

2 http://emas2018.dibris.unige.it/images/papers/EMAS18-19-appendix.pdf
3 https://www.docker.com/what-docker
4 http://www.ibm.com/bluemix
5 Socket.io: https://socket.io/

6 M.Gatti de Bayser et al.

counselor, savings account adviser, certificate of deposit adviser, and treasury
bonds adviser. While the user plays the roles of person and user.

Regarding speech acts, the agents which played the role of experts were de-
signed to answer to greetings, thank, query, request, inform, agree, not understood,
and bye. Among the query speech act sub-classes, the agents could also perform
simulation to compute the return of investment for a set of values given by the
user using natural language. We specified the speech act and topic classes based
on the classes recognized by the microservices which we trained for finch. There
were in total 13 different speech acts. The topic classifier handles 6 different
topics: investment in general, savings account, certificate of deposit, treasury
bonds, all, or undefined based on a dictionary.

In finch, 15 norms were defined of which 6 were prohibitions, 2 were permis-
sions, and 7 were obligations. These norms are used in 25 transitions, either for
theirs activation or deactivation. For the conversation protocol, we designed the
finite-state- automaton to contain only 2 states: one in which no norm is active
and one in which at least one norm is active. The initial state of finch is one
with active norms because the conversation starts with investment chatbot (In)
having the obligation to talk. A subset of finch conversation rules specification
is present in Appendix B for illustration.

The GC service is implemented as the following. Once a message arrives
at GC Service, the best possible message descriptor is filtered by the message
descriptor attributes and, in case a message matches to two or more descriptors,
the one with the larger number of filters is selected. If still remains two or more
descriptors, the first one is selected. The chosen message descriptor will trigger
one of the specified transitions, which will activate the norms to be applied to the
participants according to their roles, and also based on the variables regarding
to sender, last sender and receivers message fields.

To illustrate, please see Appendix B. When the user requests the return on in-
vestment calculation, the m3 descriptor is detected and triggers the transition t1,
which activates the norms oblig to mediator, proh to experts and perm to sender.
So, the In bot is required to reply and sends a message requesting the simulation
to the investment experts. This new message is identified with the message de-
scriptor m4, which triggers the transition t2, and now this transition deactivates
some norms and activates the norms oblig to receiver that applies to partici-
pantes stored in $receiver variable, perm to sender that applies to $sender , proh
to experts except to infor- m calc and proh to mediator except to finish calc.

Then, as expected, the three required experts replies, and transition t3 is
fired which allows the mediator to reply with a message suggesting the best
option between the three investments, concluding the calculation results.

6 Experimental Results

We run a user study without human supervision in which 37 participants inter-
acted with finch. 3717 messages were generated by the chatbots but only 963
were allowed and actually posted back in the chat. The average number of mes-

Ravel: A MAS orchestration platform for Human-Chatbots Conversations 7

sages per dialogue was 100 (including the prohibited and the ones not displayed
to the user) with a standard deviation of 49.49 and coefficient of variation of
0.49. The average number of allowed messages per dialogue was 26 with stan-
dard deviation of 12.77 and coefficient of variation of 0.49. The average chatbot
response time per user message was 0.63 seconds with 0.4 as the standard de-
viation. There were on average 15 generated messages per minute with a 9.27
standard deviation, of each 4 on average were allowed per minute, with 2.67
standard deviation. From the 25 transitions specified, only 18 were actually ac-
tivated in this experiment. Transition t2 was the most frequent (18.88%), while
transition t3 happened 14.21% of the time. Within the 7 transitions which were
not activated, 4 were transitions from or to the state with no active norms. This
means that there was at least one active norm during all dialogues. The other
3 were transitions activated by a message with a name mention to a prohibited
receiver, an inform from the mediator, and off-topic messages sent by the user.
Those three types of messages did not happen. We performed qualitative analysis
on the 37 dialogues with regard to inter-message coherence. Only 2 conversations
demonstrated some level of incoherence. This happened because the user asked
to simulate the return of investment for only one particular investment option.
The results indicated that the initial set of norms we modeled were sufficient to
enable inter-message coherence in 97% of the dialogues.

7 Conclusions and Future Work

We have presented in this paper Ravel, a MAS-based platform able to handle, in
real scenarios, many of the key turn-taking issues in multi-party chat-oriented
conversations. We have described how we successfully instantiated it to a real-
world application with chatbots as finance advisors. There are, however, some
challenges which are still open. For instance, given a set of rules which are spe-
cific to a turn, there is the problem to create generic rules which can be applied
not only to that specific turn but to similar turns. There is a need of creating
an automated method for this task. Hence, conversation rules learning from di-
alogue corpus is our future work.

References

1. Arcos, J.L., Esteva, M., Noriega, P., Rodŕıguez-Aguilar, J., Sierra, C.: Engineering
open environments with electronic institutions. Eng. Appl. Artif. Intell. 18(2),
191–204 (Mar 2005)

2. Artikis, A., Sergot, M., Pitt, J., Busquets, D., Riveret, R.: Specifying and Executing
Open Multi-agent Systems, pp. 197–212. Springer Int. Publishing (2016)

3. Asri, L., Schulz, H., Sharma, S., Zumer, J., Harris, J., Fine, E., Mehrotra, R., Sule-
man, K.: Frames: a corpus for adding memory to goal-oriented dialogue systems. In:
Proc. of the 18th Annual SIGdial Meeting on Discourse and Dialogue. pp. 207–219.
ACL, Saarbraecken, Germany (August 2017), http://aclweb.org/anthology/W17-
5526

8 M.Gatti de Bayser et al.

4. Gatti de Bayser, M., Alberio Guerra, M., Cavalin, P., Pinhanez, C.: Specifying and
implementing multi-party conversation rules with finite-state-automata. In: Proc.
of the AAAI Workshop On Reasoning and Learning for Human-Machine Dialogues,
DeepDial’18 (Feb 2018)

5. Gatti de Bayser, M., Cavalin, P., Souza, R., Braz, A., Candello, H., Pinhanez, C.,
Briot, J.P.: A hybrid architecture for multi-party conversational systems. (2017)

6. Bellifemine, F., Poggi, A., Rimassa, G.: Jade: a fipa2000 compliant agent develop-
ment environment. In: In: Proc. of Agents Fifth Int. Conf. on Autonomous Agents.
pp. 216–217 (2001)

7. Bordes, A., Weston, J.: Learning end-to-end goal-oriented dialog. CoRR
abs/1605.07683 (2016)

8. Bordini, R., Hbner, J., Wooldridge, M.: Programming Multi-Agent Systems in
AgentSpeak using Jason. Wiley Series in Agent Technology, Wiley (2007)

9. Busetta, P., Rnnquist, R., Hodgson, A., Lucas, A.: JACK Intelligent Agents -
Components for Intelligent Agents in Java. AgentLink News (1999)

10. Gleizes, M.P., Gomez-Sanz, J. (eds.): AOSE X. Springer, Heidelberg (2010)
11. for Intelligent Physical Agents, F.F.: Fipa acl message structure specification

(2002), http://www.fipa.org/specs/fipa00061/index.html
12. Liu, C., Xu, P., Sarikaya, R.: Deep contextual language understanding in spoken

dialogue systems. In: INTERSPEECH 2015, 16th Annual Conf. of the Int. Speech
Communication Association, Dresden, Germany, September 6-10, 2015. pp. 120–
124 (2015)

13. Meyer, J.J.: Applications of Deontic Logic in Computer Science: A Concise
Overview, pp. 17–40. John Wiley & Sons (1993)

14. Meyer, J.J., Wieringa, R. (eds.): Deontic Logic in Computer Science: Normative
System Specification. John Wiley and Sons Ltd., Chichester, UK (1993)

15. Murata, T., Minsky, N.H.: On monitoring and steering in large-scale multi-agent
systems. In: In: Selmas0́3 2nd Int. Workshop on Soft. Eng. for Large-Scale Multi-
Agent Systems, AAMAS (2003)

16. Newman, S.: Building Microservices. O’Reilly Media (2015)
17. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical

Guide. John Wiley & Sons, Hoboken, NJ (2005)
18. Paes, R., Carvalho, G., Gatti, M., Lucena, C., Briot, J.P., Choren, R.: Enhancing

the environment with a law-governed service for monitoring and enforcing behavior
in open multi-agent systems, Lecture Notes in Computer Science, vol. 4389, pp.
221–238. Springer-Verlag (2007), invited chapter

19. Paes, R., Carvalho, G., Lucena, C., Alencar, P., Almeida, H., Silva, V.: Specify-
ing laws in open multi-agent systems. In: In Agents, Norms and Institutions for
Regulated Multiagent Systems - ANIREM (2005)

20. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A bdi reasoning engine. In:
R. Bordini, M. Dastani, J.D., Seghrouchni, A.E.F. (eds.) Multi-Agent Program-
ming. pp. 149–174. Springer Science+Business Media Inc., USA (9 2005), book
chapter

21. Santos, J., Zahn, J., Silvestre, E., Silva, V.T., Vasconcelos, W.W.M.P.D.: Detection
and resolution of normative conflicts in multi-agent systems: a literature survey.
AAMAS 31(6), 1236–1282 (4 2017)

22. Serban, I., Sordoni, A., Bengio, Y., Courville, A., Pineau, J.: Hierarchical neural
network generative models for movie dialogues. ArXiv e-prints abs/1507.04808
(July 2015)

23. von Wright, G.H.: Deontic logic. Mind 60(237), 1–15 (1951)

