
Human-Agent Interaction, the System Level
Using JASON

Antonio Chella, Francesco Lanza, and Valeria Seidita

Dip. dell’Innovazione Industriale e Digitale - Universitá degli Studi di Palermo
name.surname@unipa.it

Abstract. The main characteristic of an agent is acting on behalf of
humans. Then, agents are employed as modeling paradigms for complex
systems and their implementation. Today we are witnessing a growing
increase in systems complexity, mainly when the presence of human be-
ings and their interactions with the system introduces a dynamic variable
not easily manageable at the design phase. Design and implementation of
this type of systems highlight the problem of making the system able to
decide in autonomy. In this work we propose an implementation, based
on Jason, of a cognitive architecture whose modules allow structuring
the decision-making process by the internal states of the agents, thus
combining aspects of self-modeling and theory of the mind.

Keywords: Human-agent interaction · BDI agent · Jason.

1 Introduction

Today we want software able to cooperate with us, to anticipate our needs and
to coordinate its activities with us. We also wish to have software that can
autonomously and intelligently intervene and act in dynamic and changing con-
texts operating as humans would do. For example, a robot-human team has to
cooperate to achieve a common goal in an environment not fully known. Robots
and humans have to decompose the overall goal into a series of subgoals. They
should then be able to understand or learn which actions are needed to reach
the objective. Finally, they should match their skills with the correct steps to
perform, and eventually they should delegate some task to each other.

This is a scenario concerning fully autonomous cooperative work that requires
a complex software system with runtime adaptation to new situations that may
lead to new requirements and constraints. Everything injected and evaluated at
runtime cannot be defined during design phases, and therefore the system has
to be handled as a self-adaptive system. In brief, a self-adaptive system must
be aware of its objectives; it must be able to monitor the working environment
and understand how far it is and if it is deviating from the objective. Moreover,
it must be able to adopt alternative plans and it must also be able to generate
new plans when necessary.

Important challenges in this field concern knowledge representation and up-
dating, the selection and creation of plans at runtime, the invention of techniques

2 A. Chella et al.

for purposefully and efficiently conveying the (runtime) decision process. These
challenges lead to different solutions depending on whether we look at the ar-
chitectural level or system level.

In this paper, we focus on the system level counterpart of the decision pro-
cess that we achieve by employing BDI agents paradigm [7] and Jason as an
agent language [5][4]. Decision processes elaborate data coming from external
sources and from the environment. In many domains, it would not be enough, or
it would be hard to design and implement the decision process merely employing
the monitoring, analyzing, planning, acting (MAPE) cycle. In our view, decision
process should take as input all the internal states of agents involved in the
environment, including human. Internal states then embody the changes occur-
ring at runtime. The project we discuss aims at considering, as a crucial part of
the decision process, the data coming from the capability of attributing mental
states (beliefs, desires, emotions, knowledge, abilities) to itself and the other. In
brief, we take into account self-modeling and theory of mind capabilities.

Contribution and Outline of the paper. In this paper we illustrate the first
steps of our ongoing work aiming at integrating self-modeling and the theory of
mind in an architectural structure to implement adaptive decision process at the
architectural and the system level. The architectural part extends the MAPE
cycle [1] with modules allowing the perception of the external and the inner
world in the form of internal states. The way we structured the architectural
part and the rationale it underpins let us quickly fill the gap with the system
level. We then present an extended version of the Jason reasoning cycle to map
the architectural level into an agent framework.

The paper is organized as follows. Section 2 illustrates features of human-
agent interaction and why we extend Jason current implementation. In Section
3 we briefly describe our architecture. Finally, Section 4 draws some discussions
and conclusions.

2 Towards using BDI Agents and Jason for Implementing
Human-Agent Interaction

Jason is an implementation of AgentSpeak language [9][5] that somehow allows
overcoming the old denotation of software. The software is no longer something
that provides a service by an exact coding, and that depends heavily on the
intervention of the user. In Jason’s logic, a computer program is something that
has the know-how and choose actions to pursue a goal on behalf of the human
and without his intervention. For this reason, a Jason program is called Agent.
It does not yet have the characteristics to perfectly replicate how a human being
acts, but it can autonomously process the knowledge it possesses about how to
do things. So, the basic idea behind Jason is to define what is called the program
know-how in the form of a set of plans. The Jason platform allows executing the
deliberation process of a BDI agent that leads to choosing the intention to pursue
within a set of possible states of affairs.

Human-Agent Interaction, the System Level Using JASON 3

An agent has the ability to decide what to do, the set of actions in its reper-
toire to be undertaken starting from a set of data obtained through sensing and
to modify the surrounding environment. In AgentSpeak, and therefore in Jason,
deciding what to do means manipulating plans and the environment. Typically,
a Jason agent has partial control over the environment in which it lives because
it is also populated by other agents having control over their part of the environ-
ment. It can autonomously work because it is structurally defined to do this but
cannot adapt itself in a dynamic environment; especially if the dynamicity of the
environment derives from human and other agents interactions. The procedure
for handling agent-agent interaction is standardized and mainly established at
design time. Human-agent interactions have to be still explored, especially in
context of cooperation between humans and agents which presupposes delega-
tion and/or selection of actions to be undertaken even by observing the human
actions and skills.

Human-agent interactions can be encoded from simple situations where ev-
erything may be identified and established at design time (environment, plans,
actions and changing situations) to more complex ones where changes occur at
any time and where the agent has to decide autonomously and self-adapt. It is a
hard task mainly because we do not have the tools to analyze and identify all the
possible elements that cause perturbation and change in the environment, so we
cannot determine, at design time, a decision-making process to be implemented
efficiently at the system level.

In the literature, some promising approaches [2][3] propose to solve this prob-
lem by shifting the design time to runtime. Also, some architectures containing
modules for learning and memory have been introduced to pass the decision-
making process through the stored and processed sensing data [10][8][6]. How-
ever, these approaches do not take into account the use of mental states, which
is the primary element in our hypothesis to be able to create human-agent in-
teraction systems behaving as human-human systems.

In the following section we briefly outline the architecture we identified to
overcome the said problems, and we detail our proposal for mapping it into the
system level employing the power offered by Jason.

3 Extending Jason Interpreter and its Classes

In the first part of our study, we identified an architecture heavily focused on
the typical MAPE cycle. Here, some specific modules allow the decision-making
process to be triggered, not only from the purely objective stimuli coming from
the environment but, also, from the internal state of agents and the observation
and interpretation of the actions carried out by the other agents in the working
environment.

Fig. 1 shows a high-level view of the main modules of the identified archi-
tecture. The modules we added to a generic architecture centered on the sens-
ing/plan/action cycle are highlighted in red. As can be seen, the heart of the
decision-making process consists of the Reasoning module, the Action Selection

4 A. Chella et al.

and the module for managing anticipations. The latter module represents the
part of the system devoted to generating the current situation. Each time an
agent has a goal to reach, it selects an action and creates anticipation of the
state of the world resulting from that action. The same module receives as input
the motivations, the goals and all the elements present in the memory, processes
them, decides and executes the corresponding action.

Environment

M
em

or
y

Decision Process

Action Selection Reasoning/
Learning

Anticipation

Situation
Queue

Execution
Observation/
Perception

Motivation

Procedural
Mem.

Declarative
Mem.

Goal

Current
Situation Fig. 1. The Architecture

Level for Human-Agent
Interaction Systems.

The Motivation module is the one triggering the anticipation and the action
selection. It is the core of the decision process, here all the information and
process for elaborating mental states reside and it is the module devoted to
the representation of inner and outer word of each cognitive agent. Through
this module, therefore, it is possible to make decisions about the actions being
conveyed by the sense of self, by the ability to attribute mental states (belief,
desire, intention, knowledge, capabilities) to oneself and to others and by the
understanding that others have different mental states, by emotions, by the level
of trust in the abilities (or more generally by trust) of others and of oneself. This
architecture has been mapped onto a system by extending the Jason reasoning
cycle.

The reasoning cycle of the Jason interpreter is shown in Fig. 2, it is the
physical counterpart of the BDI deliberation and means-ends reasoning pro-
cess. Rectangles represent the components determining the agent state; rounded
boxes, diamonds and circles are used for describing the functions used in the
reasoning cycle. In particular, circles model the application processes and dia-
monds represent the selection functions; Jason allows to modify and customize
the functions represented by round boxes and diamonds. The cycle is divided
into ten steps, starting from the perception of the environment to the selection of
actions to be taken. The main steps of the reasoning cycle concern updating the
belief base, managing the events that allow to represent the changes in the envi-
ronment and in the goals, retrieving plans from the Plan Library, unifying events
with plans available for the selection of the most useful plan (the so-called the
applicable plan), and selecting intentions. Perception from and actions in the en-

Human-Agent Interaction, the System Level Using JASON 5

Agent
Perceive

BUF actBRF

checkMail

Belief
Base

SM

SocAcc

Suspended Intentions

…

Intentions

New …

Percepts

Messages

Percepts

Events

Check
Context

Unify
Event

SE

Plan
Library

Beliefs

Plans

Relevant
Plans

SO

Applicable
Plans

Intended
Means

SI

Intentions

Execute
Intention

Selected
Intention

Beliefs

sendMsg

Action

.send

Actions

Messages

Beliefs

External
Events

Beliefs to
Add and
Delete

Messages

Updated
Intention

Selected
Event

Events

New

Internal
Events

Fig. 2. Jason agent reasoning cycle. Redrawn from [5]

vironment are realized by means of the following functions: perceive, checkMail,
act and sendMsg (refer to [5] for details). The cycle starts with updating the
Belief Base and generating an event through the Belief Update Function (BUF)
and Belief Revision Function (BRF); these functions have a correspondence with
the buf and brf methods (see Fig. 4) which can be customized by users for pro-
gramming more sophisticated agents. The brf takes the agent’s current beliefs
and new percepts and adds/removes beliefs. An event is then selected by the
event selection function SE ; events represent perceived changes in the environ-
ment and in the agent’s goals. Selected event is unified with the trigger event of
plans retrieved from the Plan Library to determining the set of relevant plan,
relevant for the given event. Once the relevant plans have been identified, they
are checked against the context (a set of belief literals representing the condi-
tion for the plan to be activated) to verify whether they are logical consequence
of beliefs. The result is a set of applicable plans. Given the agent’s know-how
expressed by the Plan Library and all the information about the environment
- in the Belief Base - function option selecion function SO chooses one plan
that becomes the intended means handling the event by including it in the set
of intentions. The Intentions components contains all the intentions ready for
the execution; agent chooses employing the intention selection function SI . The
intention selection is then executed.

We exercised the robustness and stability of the Jason interpreter to imple-
ment BDI agents and extended the reasoning cycle to introduce the modules of
the architecture above (Fig. 1). Figures 3 and 4 illustrate the components we
added in the reasoning cycle for realizing the new decision process (Fig. 1) and
the classes we extended and inserted in the user-defined components. Methods

6 A. Chella et al.

Agent
Reasoning

Anticipation

Learning

O
bservation / Perception / Com

m
unication

Action Selection

Perceive

BUF

act

BRF

checkMail

Belief
Base

SM

SocAcc

Suspended Intentions

…

Intentions

New …

Percepts

Messages

Percepts

Events

Check
Context

Unify
Event

SE

Plan
Library

Beliefs

Plans

Relevant
Plans

SO

Applicable
Plans

Intended
Means

SI

Intentions

Handle
Situation

Selected
Situations

Beliefs

sendMsg

.send

Actions

MessagesBeliefs

External
Events

Beliefs to
Add and
Delete

Messages

Updated
Intention

Selected
Event

Events

New

Internal
Events

Execute
Intention

Current
Situation

Action

Situation Queue

MUF

Motivation
Base

M
otivations

MRF

M
otivations

Execution

Fig. 3. Extended Jason reasoning cycle.

creation and override complete, towards the code level, the production of agents
that reason by exploiting internal state.

Mainly, we introduced components and functions (in blue in the Fig.) related
to the learning/reasoning module and one process realizing the newly introduced
anticipation module. In parallel, concerning the Belief Base, we added the Mo-
tivation Base that includes all that beliefs related to the mental states, emotion
and so on, as said before. We defined motivation as an extension of the belief
to include beliefs on oneself and others; beliefs are the part of code related to
the state of the world outside whereas motivations refer to the mental states.
We also added Motivation Update Function (MUF) and Motivation Revision
Function (MRF); at the beginning of each cycle, the first function updates and
initializes all the agent’s motivations and the Belief Base, takes as input a list
of literals with beliefs and motivations (look at both Figures 3 and 4); in this
case the input from belief base serves as it were the input from the perception.
The MRF function is similar to the BRF. Motivations are elaborated from the
modified SI function; it generates a list of situations to establish which situ-
ation has to be immediately executed and the queue to be used for selecting
events through SE function. Situation is alike the state of affairs regarding the
environment; situation represents the overall state of the agent also including
mental states. In this way, we let agents reason on new events also generated
from internal states. Finally, the process Handle Situation generates the current
situation to be executed and provides the queue of situations to the SE func-
tion. As regards the agent code (Fig. 4), we added a class as an extension of the
BeliefBase class named Motivation. The Motivation class allows managing re-
sources as the BeliefBase does and also querying external services to let the agent

Human-Agent Interaction, the System Level Using JASON 7

be aware of its internal state. The core of the proposed reasoning cycle is the
AgentMotivated class which extends the Agent class. Changing the selectEvent
and selectIntention (SE and SI) function lets support the code related to MRF
and MUF functions in Fig. 3 by means of mrf and muf methods. The agent
invokes these methods to modify the Motivation Base. Moreover, the extension
of AgArch class into AgArchMotivated lets implement the perception and action
modules. Finally, what we described is the general classes architecture; as Jason
prescribes, all the methods may be customized for implementing more complex
agents.

Circumstance

TransitionSystem

+getSender()
+getReceiver()
+getIIForce()
+getPropCont()

Message

+initAg()
+stopAg()

+perceive(): List<Literal>
+act(ActionExec, List<ActionExec>)

+getAgName(): String
+checkMail()
+sendMsg(Message)
+broadcast(Message)

AgArch

Customised
Architecture

+getActionTerm()
+getIntention()
+setResult(boolean)

ActionExec

+perceive(): List<Literal>
+act(ActionExec, List<ActionExec>)

+getAgName(): String
+checkMail()
+sendMsg(Message)
+broadcast(Message)

AgArchInfraTier

SagiArch

CentralisedAg
Arch

…

Customised
Agent

+initAg()

+selectMessage(Queue<Message>): Message
+selectEvent(Queue<Event>): Event
+selectOption(List<Option>): Option
+selectIntention(Queue<Intention>): Intention

+socAcc(Message): boolean

+buf(List<Literal>)
+brf(Literal, Literal, Intention)

Agent

PlanLibrary

DefaultBeliefBase

JDBCBeliefBase

TextBeliefBase

Customised
BeliefBase

+init(Agent, String[])
+stop()

+add(Literal): boolean
+remove(Literal): boolean
+contains(Literal): Literal
+getRelevant(Literal): Iterator<Literal>
+iterator(): Iterator<Literal>
+size(): int

BeliefBase

+selectEvent(Queue<Event>, Queue<Motivation>): Event
+selectIntention(Queue<Intention>, Queue<Situation>): List<Situation>

+muf(List<Literal>)
+mrf(Literal, Literal, Motivation)

AgentMotivated

Motivation

+perceive(): List<Literal>
+act(ActionExec, List<ActionExec>)

AgArchMotivated
Intention

Situation

Fig. 4. Agent and Agent Architecture Class Diagram and the related extension for
implementing the new reasoning cycle.

4 Discussions and Conclusions

In this paper, we present the implementation of agent’s decision making process
in a dynamic context. Our proposal is based on the fact that agent’s decision-
making-process is determined by processing data coming from observation of
the external environment but also by the knowledge that the agent has about
itself and the other agents acting around. The implementation of such a system
is a hard task because its features can be seen only at runtime, during the
interaction with the whole environment. Therefore, the system must be treated
and implemented with self-adaptive characteristics.

We have exploited the power of BDI agents and the Jason language, which
natively allow creating agents that perform a deliberation and means-ends rea-
soning process. We modified the Jason reasoning cycle to include modules to
manage events, plans, and intentions selection in order to take into account what
we call motivations in addition to traditional beliefs. To complete the infrastruc-
ture, even at the agent coding level, we modified classes of the Jason component

8 A. Chella et al.

called user-defined. In particular, we added the classes needed to implement the
part of the new reasoning cycle by adding the methods necessary for the agent
to be able to choose the plan to pursue using a cognitive process based on what
we called motivations that embody the mental states of the agent.

It is worth to note that the proposed cycle extension does not alter the orig-
inal Jason agent reasoning at a high level, but extends its capabilities, allowing
the development of agents able to manage at the same time the sense of self
and the theory of the mind together with the usual decision-making process.
This work is the initial part of a larger project for the implementation of com-
plex adaptive systems including knowledge update, selection and creation of new
plans at runtime. The approach we are suggesting has given some good results
in the validation phase during a series of experiments conducted in the robotics
laboratory of the University of Palermo. In the future, we think to definitively
formalize the approach with the addition of all the design aspects to experiment
with a complex case study.

Acknowledgment. This material is based upon work supported by the Air
Force Office of Scientific Research under award number FA9550-17-1-0232.

References

1. Andersson, J., Baresi, L., Bencomo, N., de Lemos, R., Gorla, A., Inverardi, P.,
Vogel, T.: Software engineering processes for self-adaptive systems. In: Software
Engineering for Self-Adaptive Systems II, pp. 51–75. Springer (2013)

2. Baresi, L., Ghezzi, C.: The disappearing boundary between development-time and
run-time. In: Proceedings of the FSE/SDP workshop on Future of software engi-
neering research. pp. 17–22. ACM (2010)

3. Blair, G., Bencomo, N., France, R.B.: Models@ run.time. Computer 42(10), 22–27
(Oct 2009). https://doi.org/10.1109/MC.2009.326

4. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent ori-
ented programming with jacamo. Science of Computer Programming 78(6), 747–
761 (2013)

5. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems
in AgentSpeak using Jason, vol. 8. John Wiley & Sons (2007)

6. Franklin, S., Madl, T., D’Mello, S., Snaider, J.: Lida: A systems-level architecture
for cognition, emotion, and learning. IEEE Transactions on Autonomous Mental
Development 6(1), 19–41 (2014)

7. Georgeff, M., Rao, A.: Rational software agents: from theory to practice. In: Agent
technology, pp. 139–160. Springer (1998)

8. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: An architecture for general intel-
ligence. Artificial intelligence 33(1), 1–64 (1987)

9. Rao, A.S.: Agentspeak (l): Bdi agents speak out in a logical computable language.
In: European Workshop on Modelling Autonomous Agents in a Multi-Agent World.
pp. 42–55. Springer (1996)

10. Sun, R.: The importance of cognitive architectures: An analysis based on clarion.
Journal of Experimental & Theoretical Artificial Intelligence 19(2), 159–193
(2007)

