
Engineering Multi-Agent Systems:
State of Affairs and the Road Ahead

Viviana Mascardi1, Danny Weyns2, Alessandro Ricci3
(Workshop co-chairs)

Clara Benac Earle4, Arthur Casals5,10, Moharram Challenger6, Amit Chopra7, Andrei Ciortea8,
Louise A. Dennis9, Álvaro Fernández Díaz4, Amal El Fallah-Seghrouchni10, Angelo Ferrando11,
Lars-Åke Fredlund4, Eleonora Giunchiglia12, Zahia Guessoum10, Akin Günay7, Koen Hindriks13,
Carlos A. Iglesias4, Brian Logan14, Timotheus Kampik15, Geylani Kardas6, Vincent J. Koeman13,
John Bruntse Larsen16, Simon Mayer17, Tasio Méndez4, Juan Carlos Nieves15, Valeria Seidita18,

Baris Tekin Tezel6, László Z. Varga19, Michael Winikoff20
(Contributing workshop participants)

1 University of Genova, Italy, viviana.mascardi@unige.it
2 KU Leuven Belgium and Linnaeus University, Sweden, danny.weyns@gmail.com

3University of Bologna, Italy, a.ricci@unibo.it

4Universidad Politécnica de Madrid, ES, 5Universidade de São Paulo, BR, 6Ege University, TR,
7University of Lancaster, UK, 8MINES Saint-Étienne, FR, 9University of Liverpool, UK, 10Sorbonne Université, FR,

11University of Genova, IT, 12University of Oxford, UK, 13Delft University of Technology, NL, 14University of Nottingham, UK,
15Umeå University, SE, 16Technical University of Denmark, DK, 17University of St. Gallen and ETH Zurich, CH,

18Università degli Studi di Palermo and CNR, IT, 19Eötvös Loránd University, HU, 20Otago University, NZ

ABSTRACT
The continuous integration of software-intensive systems together with
the ever-increasing computing power offer a breeding ground for
intelligent agents and multi-agent systems (MAS) more than ever
before. Over the past two decades, a wide variety of languages, models,
techniques and methodologies have been proposed to engineer agents
and MAS. Despite this substantial body of knowledge and expertise, the
systematic engineering of large-scale and open MAS still poses many
challenges. Researchers and engineers still face fundamental questions
regarding theories, architectures, languages, processes, and platforms
for designing, implementing, running, maintaining, and evolving MAS.
This paper reports on the results of the 6th International Workshop on
Engineering Multi-Agent Systems (EMAS 2018, 14th-15th of July,
2018, Stockholm, Sweden), where participants discussed the issues
above focusing on the state of affairs and the road ahead for researchers
and engineers in this area.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent agents,
Multiagent systems
D.2 [Software Engineering]: General

General Terms
Algorithms, Design, Reliability, Experimentation, Security, Human
Factors, Standardization, Languages, Theory, Verification.

Keywords
Software engineering, Agents, Multi-Agent Systems, Goal Reasoning,
AI.

1. INTRODUCTION
According to many scientists, one way to describe Artificial Intelligence
(AI) is as the study of agents that receive percepts from, plan and
perform actions in the environment. The main unifying theme
underlying AI is then the idea of an intelligent agent able to reason,

plan, act, interact, and learn [38]. This metaphor makes intelligent
agents appealing for a wide audience interested in classical and
distributed AI, agents and multi-agent systems (MAS) engineering,
machine learning, and decentralized systems. Despite the substantial
body of knowledge and expertise developed in the design and
development of MAS, the systematic engineering of large-scale and
open MAS still poses many challenges. Even though various languages,
models, techniques and methodologies have been proposed, researchers
and developers still face fundamental questions attaining the
engineering of MAS, and more in detail foundational theories,
architectures, languages, processes, and platforms for designing,
implementing, running, maintaining and evolving MAS.

In this context, interesting questions to be addressed are:

• How to express the requirements for large-scale and open MAS and
how to translate these requirements into agent goals?

• Which architectures are most suitable for MAS of different
domains?

• How to seamlessly integrate AI and machine learning techniques
into design/programming languages and tools for agent-based
systems?

• How to specify, design, implement, verify, test, validate and evolve
MAS?

• How to enable agent-based systems to deal with continuous change,
for example in the operating environment or user requirements?

• How to ensure/control global behavior of decentralized MAS?

• How to seamlessly integrate MAS engineering with mainstream
engineering models, languages, frameworks and tools?

• What are the implications of MAS engineering in the context of
continuous development and deployment?

• What is the synergy between Cloud and Edge computing on the one
hand and MAS engineering on the other hand?

• How to scale with the complexity of real-world application
domains?

• How can MAS help developing Cyber-Physical Systems and
Internet of Things (IoT)?

• Which tools and frameworks are available/needed?

• Which processes are required for fast but high-quality development
of MAS?

EMAS 2018 zoomed in into several of these questions through an
invited talk, focused presentations, panels, and discussion groups. After
a short presentation of the workshop and its history, the remainder of
the paper summarizes these activities and the main outcomes of the
event.

2. EMAS WORKSHOP
EMAS 2018 took place in Stockholm, Sweden, on 14th-15th of July,
2018. It aimed to gather researchers and engineers with an interest in
software engineering (SE) and programming of MAS, declarative agent
languages and technologies, machine learning, and other AI-related
topics to present and discuss their research and emerging results in
MAS engineering. The overall purpose of this workshop was to
facilitate the cross-fertilization of ideas and experiences in the various
fields to:

1. enhance our knowledge and expertise in MAS engineering
and improve the state-of-the-art;

2. define new directions for MAS engineering that are useful to
practitioners, relying in results and recommendations coming
from different but continuous research areas;

3. investigate how practitioners can use or adapt established
processes and methodologies for the engineering of large-
scale and open MAS;

4. involve more master and PhD students.
The EMAS workshop has been held as part of AAMAS since 2013 and
was affiliated to AAMAS through the AOSE, ProMAS and DALT
workshops since its inception. The sixth edition of the workshop, co-
located for the first time with IJCAI/ECAI and ICML besides AAMAS,
followed the successful editions that were held in 2013 in St. Paul,
Minnesota, in 2014 in Paris, France, in 2015 in Istanbul, Turkey, in
2016 in Singapore, and in 2017 in São Paulo, Brazil.
The post-proceedings of EMAS 2013 (LNAI 8245), EMAS 2014
(LNAI 8758), EMAS 2015 (LNAI 9318), EMAS 2016 (LNAI 10093),
EMAS 2017 (LNAI 10739) have been published by Springer in the
Lecture Notes in Artificial Intelligence series. A few special issues of
the International Journal of Agent-Oriented Software Engineering1

arising from EMAS have also been published.
The publication of the EMAS 2018 post-proceedings with Springer in a
book under the Lecture Notes in Artificial Intelligence (LNAI) is under
way.

Australia Brazil
Denmark France
Germany Hungary
India Ireland
Italy Netherlands
New Zealand Poland
Portugal Spain
Sweden Turkey
United Kingdom United States

Figure 1: EMAS 2018 submitted papers' authors.

1 http://www.inderscience.com/jhome.php?jcode=ijaose

EMAS 2018 received 32 submissions by authors from all around the
world, as shown in Figure 1. From 32 submissions, 21 papers were
accepted in the following categories:

• 11 of 22 regular paper submissions accepted
• 5 accepted as short paper
• 2 of 4 short paper submissions accepted
• 1 of 2 demo submissions accepted
• 0 of 1 extended abstracts accepted
• 2 of 3 doctoral project submissions accepted

EMAS 2018 program committee consisted of 41 scientists from 16
different countries (Figure 2).

More than 50 persons attended the events scheduled in the first day, and
about 30 attended the second day.

Argentina
Australia
Belgium
Brazil
Canada
Denmark
France
Germany
Italy
Netherlands
New Zealand
Portugal
Spain
United Arab Emirates
United Kingdom
United States

Figure 2: EMAS 2018 PC members.

3. WORKSHOP INVITED TALK
The invited talk was given by Simon Mayer, now with the University of
St. Gallen as a Professor of Interaction- and Communication-based
Systems, and dealt with Autonomous Agents for Flexible Hypermedia
Systems.
The Web of Things (WoT) community used to be driven by the
application of Web technologies to enable flexible mash-ups of smart
devices on top of the Internet of Things, an objective that we consider
accomplished (from a research standpoint) in many different domains
ranging from smart homes and cars to dynamic factories in the Industry
4.0 paradigm. However, work in the WoT space on engineering
interacting systems of smart devices - “physical mash-ups” - is tightly
connected to work in the Semantic Web community and in the AAMAS
domain: one of the next big things for the WoT community is to
increase the autonomy of Web-enabled devices and their understanding
of one another. This can be done, for example, by outfitting the devices
with semantic descriptions of their properties and functions and,
sometimes, even bestowing agency upon them. In the talk, Mayer
discussed this convergence that will enrich real-world devices with
AAMAS technologies, and open up real-world applications to the
AAMAS community, while examining important properties of the Web
architecture that support flexibly interacting autonomous things on the
Web. He placed a particular emphasis on the HATEOAS principle or
REST: hypermedia as the engine of application state, which directly
supports the creation of local mash-ups (i.e. mash-ups of services that
are hosted on a single server, or a conglomerate of friendly servers with
mutual interlinking). While HATEOAS is thus sufficient for some use
cases, it usually needs to be paired with a mechanism to enable global
service mash-ups, such as AI planning [25] potentially in combination
with techniques from the AAMAS and EMAS space [11].

4. WORKSHOP TECHNICAL
PRESENTATIONS
The workshop presentations focused on the following themes:
programming agents and MAS, Agent-Oriented Software Engineering
(AOSE), formal analysis & techniques, rational agents techniques,
modeling & simulations, frameworks and application domains.

4.1 Programming agents and MAS
The paper “Pitfalls of Jason Concurrency” by Álvaro Fernández Díaz,
Clara Benac Earle and Lars-Åke Fredlund examines to what extent the
Jason programming language [6] aids programmers in coping with the
difficulties caused by intra-agent concurrency, e.g., race conditions due
to the presence of multiple agent intentions. Roughly, such difficulties
can be classified as either being caused by (i) unexpected interference
from concurrent computations, or (ii) due to the unexpected timing of
events. The paper analyses a number strategies to mitigate concurrency
problems present either in the original Jason language, or in later
language extensions. Such mitigations are often realized as Jason
implementation options, instead of realizing changes to the underlying
Jason semantics. Relying on such optional behaviors carries the risk that
the behavior of a Jason program cannot be understood by examining its
source code alone.

Alessandro Ricci, Rafael H. Bordini, Jomi F. Hubner and Rem Collier
present “AgentSpeak(ER): Enhanced Encapsulation in Agent Plans”.
AgentSpeak(ER) extends AgentSpeak(L) [36] to support encapsulation
and allows for improving the style of Belief-Desire-Intentions (BDI)
agent programming along relevant aspects, including program
modularity and readability, failure handling, and reactive as well as
goal-based reasoning. AgentSpeak(ER) has been implemented and
experimentally evaluated on top of the ASTRA [13] platform and an
implementation in Jason is under way.

4.2 Agent-Oriented Software Engineering
In their paper “Improving the Usability of a MAS DSML”, which
received the best paper award, Tomás Miranda, Moharram Challenger,
Baris Tezel, Omer Faruk Alaca, Vasco Amaral, Miguel Goulão and
Geylani Kardas point out the need for evaluating the usability of
domain-specific modeling languages (DSMLs) for MASs especially to
leverage the adoption of such languages by the agent developers during
MAS design and implementation. Many MAS DSMLs are proposed by
the AOSE researchers along with appropriate IDEs in which both
modeling and code generation can be performed [21]. However, the
evaluation of these DSMLs is completely missing or has been carried
out with an idiosyncratic approach [9]. Miranda et al. focus on the
usability of DSMLs for MAS and introduce an approach for promoting
the usability of such languages by applying the principles of the
“Physics” of Notations (PoN) [27]. For this purpose, the visual notation
of a MAS DSML, called SEA_ML [8], was evaluated and modified
according to PoN principles which led to the development of the new
version of the language, called SEA ML++. SEA ML++ was perceived
as significantly improved in terms of the concrete syntax’s
comprehensibility, adequacy and usability, as a direct result of
employing the PoN principles.

Artur Freitas, Rafael H. Bordini and Renata Vieira present their
proposal for the “Automatic Generation of Multi-Agent Programs from
Ontology Models”. The foundation of such work, aimed at facilitating
the development of MASs designed as ontology models supporting
code generation, takes into consideration ontologies for agent-oriented
software engineering aligned with the JaCaMo framework [5]. These
techniques are implemented in a tool that supports multi-agent systems
core code generation for JaCaMo, and the underlying ontology also
allows for reasoning about the MAS models under development.

Massimo Cossentino, Luca Sabatucci and Valeria Seidita discuss the
“Lesson Learnt from Designing Self-Adaptive Systems with MUSA” and
deal with complex-self adaptive systems operating in changing
environments [46,45]. Through a retrospective analysis on the use of the
MUSA [33] middleware, the authors were able to identify the
characteristics of a design approach for such a kind of systems.

The paper “Stellar: A Programming Model for Developing Protocol-
compliant Agents” by Akin Günay and Amit Chopra presents the Stellar
programming model to simplify development of protocol compliant
agents. Stellar focuses on information-based interaction protocols, and
provides a flexible event-driven programming model for the design and
development of agents. To this end, Stellar defines a set of fundamental
patterns and operations to facilitate the exchange of information among
agents ensuring protocol compliance and eliminating common
implementation errors. A major benefit of Stellar is its independence
from imperative control flow structures, which gives substantial
flexibility to developers when implementing agents compared to
approaches that rely on such structure for compliance.

4.3 Formal analysis & techniques
The paper “Slicing Agent Programs for More Efficient Verification” by
Michael Winikoff, Louise A. Dennis and Michael Fisher focuses on
formal verification of agent programs using model checking. Formal
verification of cognitive agents is highly desirable, since the complexity
of their behavior makes assurance via traditional software testing
infeasible [49,50]. However, current state-of-the-art techniques and
tools for model checking cognitive agent programs are not able to deal
with larger programs. This paper builds on a 2009 paper by Bordini et
al. [7] which proposed to use slicing. The basic idea is to analyze a
program prior to verifying it, and simplify the program by removing
parts of it that cannot affect the result of verification of the property at
hand. The paper defined an improved slicing method that was extended
to handle features of a modern agent-oriented programming language,
and that was more precise than the earlier slicing method.

Eleonora Giunchiglia presents an approach for “Computing the Initial
Requirements in Conditioned Behavior Trees”: her paper introduces an
extension of Behavior Trees (BTs), a widely adopted model to represent
single agent policies [12], called Conditioned Behavior Trees (CBTs).
CBTs extend BTs because (i) they are able to represent policies in a
multi-agent context and (ii) their actions are decorated with pre- and
post- conditions. Further, the paper shows that given a CBT it is always
possible to compute (in polynomial time) a propositional logic encoding
whose models correspond to feasible plans. Hence, thanks to this
encoding, the initial requirements can be easily obtained.

4.4 Rational agents techniques
Lukasz Bialek, Barbara Dunin-Keplicz and Andrzej Szałas introduce
“Belief Shadowing”. Adapting beliefs to new circumstances, like belief
change, update, revision or merging, typically requires deep and/or
complex adjustments of belief bases even when adaptations happen to
be transient. The paper by Bialek et al., presents a lightweight and
tractable approach to a new kind of beliefs' interference named belief
shadowing, which takes place when part of one belief base is to be
shadowed by another belief base representing new observations and/or
beliefs of superior agents/teams. In this case no changes to belief bases
are needed, and this substantially improves the performance of systems
based on doxastic reasoning.
In the paper “Resolving Incompatibilities among Procedural Goals
under Uncertainty”, Mariela Morveli Espinoza, Juan Carlos Nieves,
Ayslan Possebom and Cesar A. Tacla introduce a deliberative approach
for dealing with conflicting goals in the settings of the practical
reasoning. The suggested deliberative approach is based on formal
argumentation theory such that plans are characterized by structured
arguments. These structured arguments are measured by a novel

strength value defined by a three-dimensional vector determined from a
probabilistic interval associated with each argument. The vector
represents the precision of the interval, the location of it, and the
combination of precision and location.

Timotheus Kampik, Juan Carlos Nieves and Helena Lindgren move a
step “Towards Empathic Autonomous Agents”. They explore the notion
of an empathic autonomous agent that proactively searches for conflicts
with other agents in its environment and employs a combined utility-
and rule-based approach for resolving these conflicts. The authors
propose an initial theoretical outline as well as a reasoning-loop
architecture for their agent and highlight some challenges, in particular
the handling of complex probabilistic environments and subjective
observations.

The paper “Intertemporal Equilibrium in Online Routing Games” by
László Zsolt Varga focuses on how to measure and ensure global
behavior of large scale and open decentralized MAS. The paper shows
how the intertemporal expectations of selfish planning agents influence
the quality of the global behavior of the MAS in a realistic urban traffic
scenario. The intertemporal expectations are derived from the
information available to the agents, therefore the critical challenge is to
design the environment in a way that drives the agents toward the
optimum, or the equilibrium.

4.5 Modeling & simulations
Igor Conrado Alves de Lima, Luis Gustavo Nardin and Jaime Simão
Sichman present “Gavel: A Sanctioning Enforcement Framework”.
Gavel enables agents to decide the most suitable sanctioning method,
with the aim of improving agency governance. The framework is
evaluated through a simulation of the Public Goods Game Model [15]
with the CArtAgO [37] simulation framework.

In his paper “Adding Organizational Reasoning to Agent-Based
Simulations in GAMA”, John Bruntse Larsen discusses the importance
of introducing organizational reasoning in a bottom-up agent platform
such as GAMA, so that bottom-up BDI models and top-down
organizational reasoning can be combined. The article formalizes the
operational semantics of the organizational reasoning extension and
illustrates its application with an example of healthcare. The purpose of
introducing organizational reasoning in simulation is to model complex
social systems where agents are organized and solve objectives for an
organization while still being autonomous. Organizational reasoning
does so by providing structure to an agent system, making roles,
objectives, role dependencies, and obligations explicit and separate
from the individual agents.

Tasio Méndez, J. Fernando Sánchez-Rada, Carlos A. Iglesias and Paul
Cummings present “A Model of Radicalization Growth using Agent-
based Social Simulation”, where they propose a modeling approach of
agent-based social simulator designed for modeling social networks,
consisting of an Agent Model, for modeling the micro level and
Network Model, for modeling meso and macro levels of analysis. This
model has been implemented in an Agent Based Social Simulator and
has been applied to Radicalism modeling, aiming at understanding
radicalization roots as a first step for being able to define and applying
suitable counter-terrorism measures.

4.6 Frameworks and application domains
Inga Rüb and Barbara Dunin-Kęplicz present a “BDI Model of
Connected and Autonomous Vehicles”: the search for balance between
the huge complexity of representing real-world Connected and
Autonomous Vehicles (CAVs) and comprehensibility of the solution
suggests the adoption of a BDI approach. BDI systems offer useful
abstractions for activities of a single self-driving car and a whole
systems of such vehicles. The BDI framework also helps to combine

two distinct features of a self-driving car: its reactiveness and
proactiveness. Moreover, modularity of the resulting architectures for
an individual CAV and urban traffic induced by these cars makes the
design easily extensible and resilient.

In the paper “Engineering World-Wide Multi-Agent Systems with
Hypermedia”, Andrei Ciortea, Olivier Boissier and Alessandro Ricci
propose an approach to engineer large-scale, evolvable MAS using
hypermedia. In a hypermedia MAS, inline with the notion of agent
environments [48], agents are situated in a distributed hypermedia
environment that they can navigate and use in pursuit of their goals.
Agents use the hypermedia to discover: (i) other entities in the MAS
(e.g., other agents, tools, knowledge repositories, organizations, datasets
etc.), and (ii) means to interact with those entities. This allows the MAS
to evolve at runtime and to be seamlessly distributed across the Web.
The authors report on a demonstrator in which BDI agents are able to
use hypermedia to discover and interact with artifacts that are deployed
at runtime and can evolve independently from the rest of the system.

“Designing a Cognitive Agent Connector for Complex Environments: A
Case Study with StarCraft” by Vincent Koeman, Harm Griffioen,
Danny Plenge and Koen Hindriks describes the design of a connector
for the real-time strategy game StarCraft and its use as a case study for
establishing a design method for developing connectors for
environments. Connectors are a key element in MAS engineering
because the evaluation of cognitive agent systems requires more
benchmark environments that offer more features and involve
controlling more units, and how to create a connector for interfacing
these agents with such richer environments is still a challenging issue.
Cognitive agents use knowledge technologies for representing state,
their actions and percepts, and for deciding what to do next. StarCraft is
particularly suitable as a testbed as it requires the design of complicated
strategies for coordinating hundreds of units that need to solve a range
of challenges including handling both short-term as well as long-term
goals.

Maira Gatti de Bayser, Claudio Pinhanez, Heloisa Candello, Marisa
Affonso Vasconcelos, Mauro Pichiliani, Melina Alberio Guerra, Paulo
Cavalin and Renan Souza present “Ravel: A MAS Orchestration
platform for Human-Chatbots Conversations”. Ravel is a MAS aimed
to integrate natural language understanding components with
orchestration components of dialogues between human beings and
agents. Ravel enables the specification of (social) conversations norms,
using deontic logic, for use in contexts where multiple agents and
human users are conversing in natural language. The usefulness of
Ravel has been demonstrated in a chat-based finance adviser system
designed as a chat group of five participants: four collaborative chatbots
with two different roles (mediator and expert) and a human or chatbot
user.

In the paper “Human-Agent Interaction, the System Level Using
JASON”, Antonio Chella, Francesco Lanza and Valeria Seidita discuss
how to support the agent’s decision process using the internal state.
They propose an extension of the Jason reasoning cycle to deal with the
implementation level of the decision process and to include elements
coming from the internal state. This work is intended to meet challenges
about knowledge representation and creation of plans at runtime.

Finally, Orso Negroni, Anthoni Othmani, Arthur Casals and Amal El
Fallah-Seghrouchni present how “Exposing Agents as Web Services in
JADE”. The paper shows how intelligent agents using a BDI
architecture can be exposed as web services and integrated with existing
cloud services. This work consists of a Smart Agenda MAS built to
function as an agent-based personal assistant. While exposing agents as
web services is not a novel approach, the objective of this work is to
understand (i) what is the current state of production-ready MAS, and
(ii) how hard it is for a software developer to understand and implement
an agents-based solution. For this reason, the Smart Agenda MAS was
implemented by first-year graduate students (masters), which allowed
the authors to observe how a MAS using very well-known Internet-

related paradigms can be modeled and implemented by developers that
never had any contact with agent technologies. It was also possible to
critically evaluate the learning curve involving the technologies used in
the implementation (JADE [4] and BDI4JADE [29]).

5. WORKSHOP PANELS

5.1 Joint panel with the Goal Reasoning
Workshop
Goals are a unifying structure across a variety of intelligent systems,
and reasoning about goals takes many forms. In the most encompassing
view, intelligent systems can use goal structures (or goal rewards) to
manage long-term behavior, anticipate the future, select among
priorities, commit to action, generate expectations, assess tradeoffs,
resolve the impact of notable events, or learn from experience. As a
result, the broad topic of goal reasoning is studied in diverse subfields
of AI such as motivated systems, cognitive science, automated planning,
and agent-oriented programming to name but a few. The Goal
Reasoning Workshop (GRW)2 brings together researchers to encourage
cross-disciplinary discussion on goal reasoning. Given the strong
connection between goal reasoning and MAS engineering, a joint panel
with GRW was organized in the first day of the EMAS workshop,
providing the opportunity to the attendees to address the topic of
“Requirements and Goals for Agent-based Systems: From Specification
and Design to Runtime Representation and Reasoning”. The panelists
Michael T. Cox, Koen Hindriks, Hector Munoz-Avila, M. Birna van
Riemsdijk, and Michael Winikoff were moderated by Amal El Fallah-
Seghrouchni. One conclusion was that each community can benefit by
learning more about the work of the other community. For example, the
GRW community has focused largely on single-agent settings, and
could benefit from looking at the work on multi-agent concepts that
have been developed in the EMAS (and more broadly AAMAS)
communities (e.g. teams, roles, social commitments, norms). Another
area where GRW could benefit from EMAS is, unsurprisingly, in
Engineering aspects: methodologies, tools, and notations for developing
agent systems. Conversely, the EMAS community could benefit by
considering more deeply the question of goal adoption, and considering
richer ways of dealing with the unexpected. It was also noted that the
GRW community is predominantly North American in terms of both
membership and research “style”, and that in approaching EMAS work,
which is more European in style, it is important to understand and
appreciate the focus on formality and precision. Conversely, the EMAS
community needs to understand and appreciate the focus on developing
end-to-end solutions.
From a programming perspective, goals provide several benefits. They
allow for potentially cleaner programs, for advanced goal reasoning,
and goals allow for a very nice mapping to (classical) planning and thus
provide for an interface between agent programming and planning.
Goals in MAS programming have shown to have their use in avoiding
interference between agents.
Key challenges that still need to be addressed include the addition of
goals to a goal base, which is computationally more expensive than the
addition of a belief to a belief base. Although both goals and beliefs
may be modeled as facts in a Prolog-like setting, adding a new goal is
more expensive than inserting a new belief, as in the second case there
is no need for consistency checking (at least in such a database which
only consists of positive literals), but some basic rationality constraints
such as that the goal is not believed to be the case must be ensured in
the first case. Also, goal management usually takes temporal aspects
into account: as an example, “Alice may want to go to the library and
to the movies”, but this is typically meant in a temporal sense as she
cannot be in two places at the same time.

2 https://dtdannen.github.io/faim2018grw/

5.2 Community panel about EMAS papers &
reviews
A community discussion about what kind of papers should be
considered relevant and significant for EMAS and how the reviews
should reflect this took place in the second day. The panelists were
Andrei Ciortea, Eleonora Giunchiglia, Vincent Koeman, Tasio Mendéz,
Juan Carlos Nieves, and László Zsolt Varga, moderated by Danny
Weyns. The outcomes of the discussion are the following.

5.2.1 What is a good EMAS paper?

1. Involved dimensions: technical vs theoretical; pure
software engineering vs pure MAS. EMAS papers can be
characterized in two dimensions: one dimension is from
technical towards theoretical paper, the other dimension is
from pure software engineering towards pure multi-agent
paper. Any paper in this two dimensional space may be a good
EMAS paper if it points out how certain properties of the
system or the system creation process induces certain
properties of the MAS. As a typical EMAS paper will offer
new programming, design, or verification techniques, such a
paper needs to motivate and provide a rationale for the
introduction of the technique and provide at least some
validation of the usefulness or effectiveness of the technique.

2. Engineering dimension. By understanding engineering as the
science concerned with putting scientific knowledge to
practical uses, a good EMAS paper introduces results that can
help to design, implement and evaluate theories and methods
of MAS. By considering the practical use of MAS, a good
EMAS paper shows clear use cases that motivate either the
theoretical and practical use of MAS theories and models. A
good EMAS paper should be based on solving real problems,
as well as detail innovative experiences and new application
domains. It should be also considered that the problem faced
could be solved with MAS methods. A good EMAS paper
should be able to analyze if MAS is a good solution for the
problem we want to face.

3. Reusability. A good EMAS paper should contribute reusable
results, in terms of theoretical insight, software and tooling,
and validation.

4. Connections with other communities. A specific category of
EMAS submissions that should be encouraged are those that
seek to create thorough conceptual and technological bridges
with other communities. Creating such bridges also implies
finding research problems in other communities that can be
addressed by reusing results from EMAS research. This
would motivate and facilitate research transfer to other
communities, therefore increasing the relevance of EMAS
research outside of the AAMAS community.

5.2.2 What is a good EMAS review?

1. Compliance with standard review guidelines. An EMAS
review is good if it follows general reviewer guidelines: it is
courteous and constructive; it explains and backs up the
judgment so that the authors are able to understand the
reasoning behind the comments; it indicates whether the
comments are opinions or are underpinned by facts; it shows
that the reviewer understood the research; and it states
whether it has a sufficient impact and adds to the knowledge
base. A good EMAS review always avoids harassment issues.

2. Compliance with the EMAS Call for Papers. A good
EMAS review recognizes the positive and negative aspects of
a paper, which should be written according to the
recommendations of the EMAS Call for Papers.

3. Maieutic approach. A good EMAS review should be
constructive and should provide hints for improvement, but
not give the solution. It should be the most explicit and
detailed about each of the aspects and provide suggestions on
how they could solve each of the problems presented. A good
review supports the learning processes of the student co-
authors. This support can be done by the suggestion of
references of the state of the art, posting questions that help
the student co-authors to realize about the particular research
tracks of the EMAS community.

6. WORKSHOP DISCUSSION GROUPS
The second day of the workshop was mainly devoted to discussion. The
co-chairs presented the discussion topics and asked the audience to add
topics if they wanted. The people in the room selected a topic of their
choice in such a way to create groups with at least 4 persons, and no
more than 7. After two sessions when groups worked on the selected
topic, each group presented the result of the discussion, reported below.

6.1 Cognitive Agent Architectures

Participants: Rem Collier, Louise Dennis, Lars-Åke Fredlund, Vincent
Koeman, Sam Leask, Brian Logan, Juan Carlos Nieves.

6.1.1 Why is the topic important?

Although cognitive agent architectures have been studied for decades,
with particularly rapid development in the area of agent programming
languages around 15 years ago [36,6] it is far from clear that a
satisfactory communal understanding of these languages has been
reached: particularly with respect to their core features and inherent
limitations. It was the view of the group that potentially too quick a
convergence on a core functionality had been achieved. This meant that
application of the languages could prove more challenging than
necessary and that important areas of theory had been omitted [18].

6.1.2 What are the challenges?

1. Programming plans or rules that are applicable in all
situations is very hard. Plan contexts typically used to
control applicability are a key source of bugs in agent
programming [50] and the need to construct contexts to cover
all eventualities results in programs containing a proliferation
of plans and a concomitant reduction in the transparency of
code - contrary to an off-stated assumption that agent
programming languages encourage a declarative and
understandable programming style. The issue typically
manifests as control over the selection of plans, but is also
relevant to the selection of goals and the selection and
scheduling of intentions (two areas that have received less
attention from the community though they have not been
entirely ignored, see for instance [34,43,44,52]). This is also a
key problem that has hindered the ability of agent
programming languages to come up with a coherent and
widely agreed upon framework to support modular
programming and so enable reuse.

2. How can interaction be well-engineered in open multi-
agent systems? When interactions between agents are
considered all aspects of program development (verification,
data integrity, resource management and concurrency)
become much harder [22]. This appears to have contributed to
a lack of strong links between the agent programming
community and the game theory community that makes up a
large and apparently separate part of the autonomous agent
landscape. It was noted that programming frameworks had

been developed for engineering cognitive agent interactions
(most notably the MOISE+ framework [19]), particularly
frameworks exploiting ideas of organizations and roles, but
accounts of their interactions with core agent programming
concepts were more ad hoc.

6.1.3 What are the particular action points for EMAS
community? AAMAS community? SE community?

The EMAS community needs to avoid falling into the assumption that
the theoretical questions around the nature and core concepts of
cognitive agent architectures are solved and fixating too heavily around
questions relating to large scale deployment and the development of
industry-strength tools.
A large number of tools and theories have been generated by other
communities that may well have significant contributions to make to the
further development of cognitive agent architectures. For instance the
Coordination, Organizations, Institutions and Norms (COIN)
community, Answer Set Programming, Argumentation, Game Theory,
AI Planning and Knowledge Representations communities all
potentially have a contribution to make to the challenges highlighted
above.
Given this observation it is important to investigate the integration
between cognitive agent frameworks and other decision-
making/reasoning models which is far from trivial. Hence, there is a
need to investigate “dynamic” cognitive agent architectures that allow
an agent to have multi-modal reasoning methods. An important
additional motivation here (not highlighted above) is the huge variety of
data that a real agent/MAS has to handle.
The group was keen to highlight that such integrative work should be
undertaken with a view to creating a coherent architecture and not on
developing ad hoc solutions to specific problems.
There is also scope for work on mapping the space of agent
programming languages, specifically in understanding what they are
and what they are not, since these languages are notable for an
assumption that they are embedded in larger software systems with
some aspects of computation delegated outside the agent.

6.2 AgentSpeak++

Participants: John Bruntse Larsen, Angelo Ferrando, Julian Padget,
Alessandro Ricci, Michael Winikoff.

6.2.1 Why is the topic important?

Programming languages are crucial tools for expressing and realizing
software systems. The right programming language can make a huge
difference to the ease of writing (and modifying) software. Accordingly,
it is hardly surprising that there has been substantial work on specialist
programming languages for developing multi-agent systems.
However, agent-oriented programming has not caught on, and one
argument for why this is the case [23] is that Agent-Oriented
Programming Languages (AOPLs) fail to provide the right balance of
features: they leave too much to the programmer to specify, so that the
overall benefit does not, in many cases, outweigh the learning cost.
The diffusion of MAS applications in the real world has not reached its
full potential yet. Reasons for this can be found for example in [47,30]:

1. limited awareness about the potential of agent technologies;
2. limited publicity of successful industrial projects carried out

with agent technologies;
3. misunderstandings about the effectiveness of agent-based

solutions;
4. risks of adopting a technology that has not been already

proven in large scale industrial applications;
5. lack of mature enough design and development tools for

industrial deployment;
6. lack of integration with common engineering practice.

Specifically, there are many features that are not adequately addressed
in current state-of-the-art AOPLs, such as:

• lookahead planning;
• learning;
• more intelligent decision making taking into account

priorities, costs, and interactions between goals and between
intentions;

• reasoning about when to adopt and when to drop goals; and
• dealing with open systems;
• embedding agent-based software engineering in mainstream

software engineering practice.

6.2.2 What are the challenges?

The challenge is to develop AOPLs that provide richer reasoning
abilities, and that do so in a way that is:

1. easy for the programmer to learn;
2. easy for them to use (including being easy to understand what

is going on); and
3. that, overall, results in a reduction in the programming effort

required, by allowing the programmer to leave certain aspects
to the language (analogy: in a modern garbage collected
programming language the programmer does not worry about
manually managing memory).

In order to achieve these aims, which are in tension with each other (e.g.
a more expressive and powerful notation will in general be harder to
understand and to learn), we need to consider whether the result should
be best realized as a programming notation, or as a library, pattern, or
service. Additionally, of course, tools need to be robust, work, be
documented, and support all development activities.
One approach that can help is to have a modular decision making
process. This can allow the programmer to consider only those aspects
of the decision-making process that are relevant to a particular
application.
Another interesting aspect in the development of MAS is their
verifiability. There exist many different approaches to check the
consistency of agents behavior with respect to a given property. Both
from a static and a dynamic viewpoint. One of the important aspects
that could be interesting to explore and extend in future works
concerning the development of new AOPLs is to find new ways to
integrate the verification inside the AOPLs process, trying to develop
self-contained verification mechanisms that support a non invasive way
to develop more robust MAS.

6.2.3 What are the particular action points for EMAS
community? AAMAS community? SE community?

The group proposed the following actions as concrete steps forward.
• In order to evaluate progress (and to aid in developing new

notations) we need a collection of cases and applications. This
would allow new or modified notations to be assessed to see
whether they can be used to express a range of applications,
and to assess to what extent they improve on existing
notations on a broad range of problems. It is worth noting that
“better” here can relate to a range of criteria: easier to write,
easier to modify, easier to explain, easier to verify, the
notation being easier to use, being more efficient (run-time),
and, perhaps more importantly, the amount of code that a
given notation allows the developer to avoid writing.

• In order to provide a simple conceptual foundation for richer
decision making, the group suggests that perhaps the time has
come to move away from AgentSpeak-style reactive plans,
and instead use Hierarchical Task Network-style recipes [41].
This would support (limited) lookahead planning and
evaluation to select a course of action, and this selection could
also perhaps be modularly (and gradually) extended to
incorporate (e.g.) priorities, resources, values in selecting
between alternative options.

There is a need for the community to work towards a consensus on a
simple set of concepts for social aspects: there are various models (e.g.
AORTA [39], MOISE [19]) that can be exploited to this aim. As a
concluding remark, the group posed the question: is there now enough
experience and agreement to develop a single model for social concepts
that is both general, and powerful?

6.3 Machine Learning & MAS
Participants: Eleonora Giunchiglia, Timotheus Kampik, Tasio Mendez,
Zahia Guessoum, Danny Weyns.

6.3.1 Why is the topic important?

New information systems and recent applications are often distributed,
large scale, open, heterogeneous and deployed to dynamic
environments. To model these complex systems, much research effort
was spent during the last years on MAS. To reach their goals in such
dynamic and changing environments, many researchers have
highlighted the need to use machine learning (ML) to build adaptive
agents and MAS. The focus was on using or creating new learning
paradigms for MAS to design and control complex systems. Several
topics were proposed by the Adaptive Learning Agents workshop3 such
as :

• Integrating learning to build opponent models in negotiation,
trust models, coordination, etc.

• Reinforcement learning (single and multi-agent).
• Distributed learning.
• Adaptation and learning in dynamic and complex

environments.
• Design of reward structure and fitness measures for

coordination.
• Scaling learning techniques to large systems of learning and

adaptive agents.

Another interesting topic is the use of learning to improve the design of
MAS. For example, several approaches have been proposed to select the
most efficient organization of agents or the learning to improve the
design of the agents’ environment [48].
While the increase in the availability of computing resources, as well as
the increasingly creative application of learning techniques has led to
some promising advancements in the application of ML, in pa rticular in
speech and image recognition, deep learning methods have some severe
limitations, for example as they typically lack transparency and do not
integrate well with prior knowledge [24].
Given the opportunities ML offers, as well as its current limitations,
MAS can both benefit from applying ML, and contribute to enhancing
ML methods.

Learning for MAS is a topic that is generally covered by existing
literature (see for example [2]). However, despite its limitations, recent
advances in (deep) learning techniques can be expected to address some
challenges MAS faces related to handling large state spaces in dynamic
and open environments, for example by applying deep reinforcement
learning [28]. In addition, the MAS community can learn from the ML
community’s success in creating tools and methods that are relevant to
and widely adopted by software engineering practitioners. At least some
research that employs MAS to enhance ML is already emerging. For
example, Irving et al. employ multi-agent argumentation to debate the
plausibility of ML results [20]. Still, it can be expected that there are
research opportunities for MAS experts that have not been explored,
yet.

6.3.2 What are the challenges?

The following challenges of combining MAS with machine learning
have been identified:

3 ALA: http://ala2018.it.nuigalway.ie/

1. While ML can be a powerful problem solver, it typically
does not provide the guarantees MAS requires. MAS as an
engineering discipline often requires guarantees that can be
formally verified. Applying models generated by (deep)
learning methods typically does not allow yet for such
guarantees. Hence, a challenge is to determine in what cases
such guarantees can be relaxed (replaced by “soft”
guarantees) and if and how ML can be applied without
weakening guarantees.

2. While the MAS and ML communities have intersections,
not enough exchange takes place. Currently, machine
learning, and in particular deep learning, is a topic at the
center of attention in both academia and industry. As a
consequence, many university graduates, as well as
experienced industry practitioners, join the ML community to
become researchers. The spotlight on ML makes it harder for
other AI communities to attract talent and also increases the
likelihood that members of the ML community are ignorant of
relevant research in MAS and other subfields.

3. MAS and ML use different technological ecosystems.
Many frameworks that are frequently used by the MAS
community - for example Jason and JaCaMo - have not
widely been adopted in practice and are dependent on
technologies that are losing traction in the industry. In
contrast, technologies that are popular among members of the
ML community, like TensorFlow [1], Keras4, and OpenAI
Gym5 are increasingly popular among software engineering
practitioners. It is up to the MAS community to bridge this
gap to have an impact outside of academia.

6.3.3 What are the particular action points for EMAS
community? AAMAS community? SE community?

On the one hand, the EMAS community can embrace the recent
advances in ML and:

● Identify MAS problems that can be potentially addressed with
ML techniques injected into standard MAS frameworks and
device corresponding frameworks and good practices;

● Develop performance benchmarks for MAS-specific ML
problems;

● Invite members of the ML community to contribute to the
EMAS community.

On the other hand, members of the EMAS community can contribute
directly to ML research by:

● Identifying ML problems that can potentially be addressed
with multi-agent systems techniques and work towards MAS-
based solutions and frameworks;

● Building technology bridges from traditional MAS concepts
like BDI agents to ML frameworks that are at the bleeding
edge of applicable technology;

● Presenting ML-related MAS research at ML venues.

6.4 Cognitive agents and MAS programming
Participants: Arthur Casals, Andrei Ciortea, Amal El Fallah-
Seghrouchni, Viviana Mascardi, Valeria Seidita, László Zsolt Varga.

6.4.1 Why is the topic important?

Finding boundaries between AOSE approaches and other SE
methods: AOSE is a very powerful approach to understand, describe
and design complex systems, although agents are not necessarily
implemented into the final systems in their pure theoretical form, and
using purely agent-oriented languages like Jason, 3APL, etc. Rather,

4 Keras: The Python Deep Learning library, https://keras.io/

5 A toolkit for developing and comparing reinforcement learning
algorithms, https://gym.openai.com/

agents may be built into applications by exploiting tools and languages
which are specific to the given application domain, and which prove
more suitable than standard agent programming languages in that
specific context. A better understanding of the relationships between
AOSE stages and more widespread and consolidated SE
approaches/tools/languages would allow AOSE and agent technology to
be more easily accepted for the engineering stages where they give
concrete advantages, and complemented with other domain-specific
solutions when they better fit the developers' needs.

Finding boundaries between applications that do need agents, and
applications that do not need them: Also, not all the applications
require to be engineered following an AOSE approach: think for
example of monolithic and centralized applications, that do not need to
be aware of the surrounding environment. Despite their relevance,
flexibility and capabilities, agents are not necessarily meant to be used
everywhere. Although dating back to almost twenty years ago, the
survey by Stone and Veloso [35] provides answers to the questions
“What advantages agent technology offers over the alternatives?” and
“In what circumstances is it useful?” that are still valid in the current
scenario, and still worth reading. They write that

“Like any useful approach, there are some situations for which it
is particularly appropriate, and others for which it is not. [...] In
particular, if there are different people or organizations with
different (possibly conflicting) goals and proprietary
information, then a multiagent system is needed to handle their
interactions. [...] Having multiple agents could speed up a
system's operation by providing a method for parallel
computation. [...] While parallelism is achieved by assigning
different tasks or abilities to different agents, robustness is a
benefit of multiagent systems that have redundant agents. If
control and responsibilities are sufficiently shared among
different agents, the system can tolerate failures by one or more
of the agents. [...] Another benefit of multiagent systems is their
scalability.
From a programmer's perspective, the modularity of multiagent
systems can lead to simpler programming. [...] Finally,
multiagent systems can be useful for their illucidation of
intelligence.”

The features mentioned by Stone and Veloso make agents and MAS
programming appealing for facing the engineering challenges raised by
nowadays complex applications, including the “Internet of Smart
Things”: IoT systems which must be resilient, efficient, and “smart”
[26,31]. When agents are cognitive ones, the ability to explicitly model
themselves, other agents, and the surrounding environment, and to
reason about these models, can be exploited to pursue machine ethics 6

also following some ethics-aware software engineering approach [3].
Other issues should be explored for understanding (inside the
EMAS/AAMAS communities) and explaining (outside them) in which
domains cognitive agents and MAS programming can be applied and
used to their full extent, finding where the application boundaries are
and allowing the technology’s potential to be fully explored. Another
related pointer that discusses these matters is [47].

Bridging: besides finding the boundaries between applications that can
benefit from being engineered following an agent-oriented approach,
and those that cannot, it is also important to explore the intersection
between agent technologies and other different paradigms, such as Web
of Things (Section 3) and Machine Learning (Section 6.3). It is possible
that some of the solutions proposed for problems within these domains
can have better results when used in conjunction with MASs. A
practical example of bridging agents with other paradigms was shown
in [10], and in his keynote presentation at AAMAS 2018, Tenenbaum
observes that “human intelligence is more than just pattern recognition.
And no machine system yet built has anything like the flexible, general-
purpose commonsense grasp of the world that we can see in even a one-
year-old human infant” [42]. There is no one technology alone that can

6 Asilomar AI Principles, https://futureoflife.org/ai-principles/

achieve the goal of creating really intelligent agents: cross-fertilization
is the key for success.

6.4.2 What are the challenges?

The challenges related to expanding the sphere of influence of agents
technologies are closely connected with the reasons for which the topic
is important. They can be summarized in:
1. Finding problems or application domains where we can do something
new or something better: as a consequence, companies that see that
agents can actually solve their problems, would start using these
technologies.
2. Reaching and working in conjunction with other communities in
order to make them aware of what we did in the last 30 years, and to
transferring our knowledge to them (social challenge).
3. Building the conceptual bridges and the technological bridges that we
need to make cross-fertilization and interoperation among different
communities possible (research and technological challenge).

These are not separated challenges, but steps that belong to the same
effort: in particular, 1 comes before 2, which in turn comes before 3.

6.4.3 What are the particular action points for EMAS
community? AAMAS community? SE community?

W.r.t. this issue, the discussion group devised very concrete actions, all
aimed at allowing neighboring research communities including SE, IoT,
Semantic Web, Security, Cyberphysical systems, etc, to know about the
EMAS/AAMAS community, and us know about them:
1. Foresee an “Interesting topics which could fit the EMAS goals and
needs, but are not explicitly tagged as agent-oriented” track at EMAS
2019 expressly designed to push cross-fertilization among research
communities;
2. Invite keynotes from other communities (which is maybe more
interesting for the EMAS community, than for cross-fertilization
purposes);
3. Disseminate our findings by submitting papers to conferences and
journal in different but neighboring areas; some examples include the
IoT conference and related events7 and TOSEM8/TSE9 journals.

7. CONCLUSIONS
The goal of engineering processes is to design and implement systems
that meet the design criteria, and to show that the final product actually
satisfies the specifications. Current software engineering practices focus
mainly on the creation process (technical-engineering aspect) in the
hope that good practices and tools lead to good products, because the
theoretical approach is considered too complex. However, a good
design needs strong theoretical background to select the best
architectural and algorithmic design options. This is even more
important for engineering MAS, because ensuring the global behavior
of large-scale MAS includes not only implementing agents that reach
their goals, but also designing how the environment, the agents, the
organization of the agents can interact with each other (theoretical-MAS
aspect) in order to optimize their global behavior.
In order to have agents being widely (and appropriately) used in real-
world applications, it is important to understand which of the Industry
problems can actually be solved (or benefit) from agents (sections 6.4.1,
6.4.2). For the same reason, it is also important to coordinate an effort
of cross-pollination between the agents community and other
communities that (i) can benefit from agents in their existing solutions
and (ii) are closer to the Industry environment and its real problems.
Finally, all the above efforts might turn out to be useless if the EMAS
goal of involving more master and PhD students would not succeed.
Understanding real-world problems, bridging with other research

7 https://www.iotevents.org/
8 https://tosem.acm.org/
9 https://www.computer.org/web/tse/

communities and with the Industry, and creating good practices and
tools should be accompanied by a parallel effort of involving students,
in particular PhD ones. PhD students have in fact time to explore and
adapt general tools to their specific purposes, while MSc students need
off-the-shelf tools to solve broader problems in a shorter period of time.
Both of them can give precious feedback in using or improving existing
technologies, and both are usually composed by curious, “fresh”, open-
minded persons. Because of their lack of experience in the MAS setting
(or better, thank to it), students can point out issues, connections, threats
and opportunities that a more “senior” community might not notice any
longer. In the EMAS 2018 edition, the involvement of students as
panelists showed the impressive potential that they have, even when
they have a very limited technical background on agents and MASs. If
we want to change the way agent technology is perceived outside the
EMAS/AAMAS community, we have to invest resources and efforts in
training the youngs. After all, “education is the most powerful weapon
which you can use to change the world” (Nelson Mandela).

8. ACKNOWLEDGMENTS
Arthur Casals is supported by CNPq, grant no. 142126/2017-9.
Eleonora Giunchiglia is supported by the EPSRC, under grant
EP/M508111/1, and the Oxford-DeepMind Graduate Scholarship.
Timotheus Kampik is supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.
Geylani Kardas, Moharram Challenger and Baris Tekin Tezel are
supported by the Scientific and Technological Research Council of
Turkey (TUBITAK) under grant 115E591.
Simon Mayer is supported by the Austrian FFG under grant #854184
(COMET).
The work of László Z. Varga was carried out in the project EFOP-3.6.3-
VEKOP-16-2017-00001: Talent Management in Autonomous Vehicle
Control Technologies - The Project is supported by the Hungarian
Government and co-financed by the European Social Fund.

9. REFERENCES
[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,

Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M.,
Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B.,
Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y. and
Zheng, X. 2016. TensorFlow: A system for large-scale machine
learning. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16), pp.
265-283.

[2] Alonso, E., D'inverno, M., Kudenko, D., Luck, M. and Noble, J.
2001. Learning in multi-agent systems. The Knowledge
Engineering Review, 16(3), pp. 277-284.

[3] Aydemir, F. B. and Dalpiaz, F. 2018. A roadmap for ethics-aware
software engineering, In Proceedings of the International
Workshop on Software Fairness, FairWare@ICSE, pp. 15-21,
ACM.

[4] Bellifemine, F. L., Caire, G., and Greenwood, D. 2007. Developing
multi-agent systems with JADE. John Wiley & Sons

[5] Boissier, O., Bordini, R.H., Hübner, J., Ricci, A. and Santi, A.
2013. Multi-agent oriented programming with JaCaMo. Science of
Computer Programming, 78(6), pp.747–761.

[6] Bordini, R. H., Hübner, J. F. and Wooldridge, M. 2007.
Programming multi-agent systems in AgentSpeak using Jason.
John Wiley & Sons.

[7] Bordini, R. H., Fisher, M., Wooldridge, M. and Visser, W. 2009.
Property-based slicing for agent verification. J. Log. Comput.
19(6), pp. 1385-1425.

[8] Challenger, M., Demirkol, S., Getir, S., Mernik, M., Kardas, G.,
and Kosar, T. 2014. On the use of a domain-specific modeling

language in the development of multiagent systems. Engineering
Applications of Artificial Intelligence, 28, pp. 111-141.

[9] Challenger, M., Kardas, G. and Tekinerdogan, B. 2016. A
systematic approach to evaluating domain-specific modeling
language environments for multi-agent systems. Software Quality
Journal, 24(3), pp. 755-795.

[10] Ciortea, A., Boissier, O., Ricci, A. 2017. Beyond physical
mashups: Autonomous systems for the Web of Things. In
Proceedings of the Eighth International Workshop on the Web of
Things, WoT 2017, pp. 16-20, ACM.

[11] Ciortea, A., Mayer, S. and Michahelles, F. 2018. Repurposing
manufacturing lines on the fly with multi-agent systems for the
Web of Things. In Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems
(AAMAS '18). International Foundation for Autonomous Agents
and Multiagent Systems, 813-822.

[12] Colledanchise, M. and Ögren, P. 2017. How behavior trees
modularize hybrid control systems and generalize sequential
behavior compositions, the subsumption architecture, and decision
trees. IEEE Trans. Robotics 33(2), pp. 372-389.

[13] Collier, R.W., Russell, S.E. and Lillis, D. 2015. Reflecting on agent
programming with AgentSpeak(L). In Proceedings of PRIMA
2015: Principles and Practice of Multi-Agent Systems - 18th
International Conference. Lecture Notes in Computer Science, vol.
9387, pp. 351–366. Springer.

[14] Fisher, M., and Ghidini, C. 2010. Executable specifications of
resource-bounded agents, Journal of Autonomous Agents and
Multi-Agent Systems, 21(3), pp. 368-396.

[15] Giardini, F., Paolucci, M., Villatoro, D. and Conte, R. 2014.
Punishment and gossip: Sustaining cooperation in a public goods
game. In Proceedings of Advances in Social Simulation. Advances
in Intelligent Systems and Computing, vol. 229, pp. 107–118.
Springer.

[16] Hindriks, K. V., de Boer, F. S., van der Hoek, W. and Meyer, J.-J.
1999. Agent programming in 3APL, Journal of Autonomous
Agents and Multi-Agent Systems, 2(4), 357-401.

[17] Hindriks, K. V., de Boer, F. S., van der Hoek, W. and Meyer, J.-J.
2001. Agent programming with declarative goals, In Proceedings
of Intelligent Agents VII, 6th Workshop on Agent Theories,
Architectures, and Languages, LNAI, vol. 1986, pp. 228-243.
Springer.

[18] Hindriks, K. V. 2014. The shaping of the agent-oriented mindset.
In Engineering Multi-Agent Systems. pp. 1-14. Springer.

[19] Hübner, J. F., Boissier, O., Kitio, R., and Ricci, A. 2010.
Instrumenting multi-agent organisations with organisational
artifacts and agents. Journal of Autonomous Agents and Multi-
Agent Systems, 20(3), pp. 369-400.

[20] Irving, G., Christiano, P. and Amodei, D. 2018. AI safety via
debate. Preprint available at arXiv:1805.00899.

[21] Kardas, G. and Gomez-Sanz, J. J. 2017. Special issue on model-
driven engineering of multi-agent systems in theory and practice.
Computer Languages, Systems & Structures, 50, pp. 140-141.

[22] Koeman, V. J., Hindriks, K. V. and Jonker, C. M. 2017. Designing
a source-level debugger for cognitive agent programs. Journal of
Autonomous Agents and Multi-Agent Systems, 31(5), pp. 941-970.

[23] Logan, B. 2018. An agent programming manifesto. International
Journal of Agent-Oriented Software Engineering, 6(2), pp. 187-
210.

[24] Marcus, G. 2018. Deep learning: A critical appraisal. Preprint
available at arXiv:1801.00631.

[25] Mayer, S., Verborgh, R., Kovatsch, M. and Mattern, F. 2016. Smart
configuration of smart environments. IEEE Trans. Automation
Science and Engineering 13(3): 1247-1255.

[26] van Moergestel, L., van den Berg, M., Knol, M., van der Paauw,
R., van Voorst, K., Puik, E., Telgen ,D. and Meyer, J. 2016.
Internet of Smart Things - A study on embedding agents and
information in a device. In Proceedings of the 8th International
Conference on Agents and Artificial Intelligence - Volume 1:
ICAART, pp. 102-109.

[27] Moody, D. 2009. The “Physics” of Notations: Toward a scientific
basis for constructing visual notations in software engineering,
IEEE Transactions on Software Engineering, 35(6), pp. 756-779.

[28] Mousavi, S. S., Schukat, M. and Howley, E. 2016. Deep
reinforcement learning: an overview. Proceedings of SAI
Intelligent Systems Conference, pp. 426-440, Springer.

[29] Nunes, I., De Lucena, C. J. P. and Luck M. 2011. BDI4JADE: a
BDI layer on top of JADE. Presented at the 9th International
Workshop on Programming Multi-Agent Systems, ProMAS 2011.

[30] Pechoucek, M. and Marík, V. 2008. Industrial deployment of
multi-agent technologies: review and selected case studies. Journal
of Autonomous Agents and Multi-Agent Systems, 17(3), pp. 397-
431.

[31] Pico-Valencia, P. and Holgado-Terriza, J. H. 2018. Agentification
of the Internet of Things: A systematic literature review,
International Journal of Distributed Sensor Networks, 14(10).

[32] Pokahr, A., Braubach, L. and Lamersdorf, W. 2005. Jadex: A BDI
Reasoning Engine. In Multi-Agent Programming. Multiagent
Systems, Artificial Societies, and Simulated Organizations
(International Book Series), vol 15. Springer.

[33] Sabatucci, L., Lopes, S. and Cossentino, M. 2017. MUSA 2.0: A
distributed and scalable middleware for user-driven service
adaptation. In Proceedings of the International Conference on
Intelligent Interactive Multimedia Systems and Services, pp. 492-
501, Springer.

[34] Shaw, P. H. and Bordini, R. H. 2010. An alternative approach for
reasoning about the goal-plan tree problem. In Proceedings of the
19th European Conference on Artificial Intelligence (ECAI 2010),
vol. 215, pp. 1035-1036, IOS Press.

[35] Stone, P., Veloso, M. M. 2000. Multiagent systems: A survey from
a machine learning perspective. Auton. Robots 8(3), pp. 345-383.

[36] Rao, A.S. 1996. AgentSpeak(L): BDI agents speak out in a logical
computable language. In Proceedings of Agents Breaking Away,
7th European Workshop on Modelling Autonomous Agents in a
Multi-Agent World. Lecture Notes in Computer Science, vol.
1038, pp. 42–55, Springer.

[37] Ricci, A., Piunti, M., Viroli, M., Omicini, A. 2009. Environment
programming in CArtAgO. In Multi-Agent Programming:
Languages, Tools and Applications, pp. 259–288. Springer.

[38] Russell, S. J. and Norvig, P. 2009. Artificial Intelligence: A modern
approach (3rd ed.). Pearson Education.

[39] Schmidt Jensen, A., Dignum, V. and Villadsen, J. 2014. The
AORTA architecture: integrating organizational reasoning in Jason.
In Proceedings of EMAS@AAMAS 2014, pp. 127-145.

[40] Sierhuis, M. 2001, Modeling and simulating work pratice.
BRAHMS: a multiagent modeling and simluation language for
work system analysis and design, Ph.D. Thesis, Social Science and
Informatics (SW), University of Amsterdam.

[41] Tate, A. 1976. Project planning using a hierarchic non-linear
planner, D.A.I. Research Report No. 25, August 1976, Department
of Artificial Intelligence, University of Edinburgh

[42] Tenenbaum, J. 2018. Building machines that learn and think like
people. In Proceedings of the 17th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2018),
IFAAMAS.

[43] Thangarajah, J. and Padgham, L. 2011. Computationally effective
reasoning about goal interactions, Journal of Automated
Reasoning, 47(1), pp. 17-56.

[44] Waters, M., Padgham, L., and Sardina, S. 2015. Improving
domain-independent intention selection in BDI systems, Journal of
Autonomous Agents and Multi-Agent Systems, 29(4), pp. 683-717.

[45] Weyns, D. 2018, Engineering Self-Adaptive Systems. In Handbook
of Software Engineering. Eds. C. Sungdeok, R. Taylor, K. Kang.
Springer.

[46] Weyns, D. and M.P. Georgeff. 2010. Self-Adaptation Using
Multiagent Systems. IEEE Software 27(1), pp. 86-91.

[47] Weyns, D. Helleboogh, A. and Holvoet, T. 2009. How to get multi-
agent systems accepted in industry? International Journal on
Agent-Oriented Software Engineering, IJAOSE, 3(4).

https://dblp.org/db/conf/dalt/emas2014.html#JensenDV14
https://dblp.org/pers/hd/v/Villadsen:J=oslash=rgen
https://dblp.org/pers/hd/j/Jensen:Andreas_Schmidt
https://dblp.org/db/journals/arobots/arobots8.html#StoneV00
https://dblp.org/pers/hd/v/Veloso:Manuela_M=
http://dblp.org/db/journals/aamas/aamas17.html#PechoucekM08
http://dblp.org/pers/hd/m/Mar=iacute=k:Vladim=iacute=r
https://dblp.org/db/journals/tase/tase13.html#MayerVKM16
https://dblp.org/db/journals/tase/tase13.html#MayerVKM16
https://dblp.org/pers/hd/m/Mattern:Friedemann
https://dblp.org/pers/hd/k/Kovatsch:Matthias
https://dblp.org/pers/hd/v/Verborgh:Ruben
https://dblp.org/db/journals/trob/trob33.html#ColledanchiseO17
https://dblp.org/pers/hd/=/=Ouml=gren:Petter
https://dblp.org/pers/hd/r/Ricci:Alessandro
https://dblp.org/pers/hd/b/Boissier:Olivier

[48] Weyns, D. and Michel. F. 2014. Agent environments for multi-
agent systems --- A research Roadmap. In Revised Selected and
Invited Papers of the 4th International Workshop on Agent
Environments for Multi-Agent Systems IV, Vol. 9068 Springer.

[49] Winikoff, M. and Cranefield, S. 2014. On the testability of BDI
agent systems. J. Artif. Intell. Res., 51, pp. 71-131.

[50] Winikoff, M. 2014. Novice programmers' faults & failures in
GOAL programs, In Proceedings of the 2014 International

Conference on Autonomous Agents and Multi-agent Systems, pp.
301-308.

[51] Winikoff, M. 2017. BDI agent testability revisited. Autonomous
Agents and Multi-Agent Systems, 31(5), pp. 1094-1132.

[52] Yao, Y. and Logan, B. 2016. Action-level intention selection for
BDI agents. In Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
pp. 1227-1235.

	1. Keras: The Python Deep Learning library, https://keras.io/
	I.2.11 [Distributed Artificial Intelligence]: Intelligent agents, Multiagent systems D.2 [Software Engineering]: General

	1. INTRODUCTION
	2. EMAS WORKSHOP
	3. WORKSHOP INVITED TALK
	4. WORKSHOP TECHNICAL PRESENTATIONS
	4.1 Programming agents and MAS
	4.2 Agent-Oriented Software Engineering
	4.3 Formal analysis & techniques
	4.4 Rational agents techniques
	4.5 Modeling & simulations
	4.6 Frameworks and application domains

	5. WORKSHOP PANELS
	5.1 Joint panel with the Goal Reasoning Workshop
	5.2 Community panel about EMAS papers & reviews

	6. WORKSHOP DISCUSSION GROUPS
	6.1 Cognitive Agent Architectures
	6.2 AgentSpeak++
	6.3 Machine Learning & MAS
	6.4 Cognitive agents and MAS programming

	7. CONCLUSIONS
	8. ACKNOWLEDGMENTS
	9. REFERENCES

